Theoretische Physik E
Lösungen der Übungsblätter

KIT - Karlsruher Institut für Technologie
Wintersemester 2012/13

Mitschriebe ausgearbeitet von
Philipp Basler, Nils Braun, Larissa Bauer
Überprüft von Dennis Roy

20. Februar 2013
Inhaltsverzeichnis

1. Übung
1. Aufgabe (Pauli-Matrizen) .. 7
2. Aufgabe (Drehimpulsoperator) .. 8
3. Aufgabe (Wasserstoffatom) .. 10

2. Übung
4. Aufgabe (Teilchen mit Spin im Zentralpotential) 15
5. Aufgabe (Unabhängige harmonische Oszillatoren) 16
6. Aufgabe (Matrixdarstellung des Spinoperators \vec{S}^2) 18
7. Aufgabe (Zwei-Spin-System) ... 20

3. Übung
8. Aufgabe (Clebsch-Gordan-Koeffizienten) 25
9. Aufgabe (Reduzible Tensoren) ... 28
10. Aufgabe (Spin-Singulett- und Tripletzustände) 29
11. Aufgabe (Vektoroperatoren) .. 30

4. Übung
12. Aufgabe (Elektrisches Quadrupolmoment) 36
13. Aufgabe (π-Nukleon-Streuung) 37
14. Aufgabe (Landé-Faktoren) ... 38
15. Aufgabe (Spin-3/2-Teilchen) ... 41

5. Übung
16. Aufgabe (Wasserstoffatom im Magnetfeld) 46
17. Aufgabe (Positronium) .. 50
18. Aufgabe (Eichinvarianz) .. 54

6. Übung
19. Aufgabe (Lorentz-Transformation des elektromagnetischen Feldes) 57
20. Aufgabe (Lorentz-Transformation des Levi-Civita-Tensors) 59
21. Aufgabe (Relativistisches Teilchen im elektromagnetischen Feld) ... 61
22. Aufgabe ($Z \rightarrow \tau^+ \tau^-$) ... 63

7. Übung
23. Aufgabe (Rechnen mit "natürlichen Einheiten") 67
24. Aufgabe (Klein-Gordon-Gleichung für Teilchen im elektromagnetischen Feld) 67
25. Aufgabe (Gamma-Matrizen) ... 72
<table>
<thead>
<tr>
<th>Aufgabe</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>26. Aufgabe (Gyromagnetischer Faktor des Protons)</td>
<td>75</td>
</tr>
<tr>
<td>27. Aufgabe (Dirac-Gleichung)</td>
<td>79</td>
</tr>
<tr>
<td>28. Aufgabe (Stromerhaltung)</td>
<td>80</td>
</tr>
<tr>
<td>29. Aufgabe (Dirac-Spinoren, Lorentz-Transformationen)</td>
<td>82</td>
</tr>
<tr>
<td>30. Aufgabe (Dirac-Spinoren. Räumliche Drehungen)</td>
<td>86</td>
</tr>
<tr>
<td>9. Übung</td>
<td>88</td>
</tr>
<tr>
<td>31. Aufgabe (Bilineare Kovarianten)</td>
<td>91</td>
</tr>
<tr>
<td>32. Aufgabe (Lösungen der freien Dirac-Gleichung)</td>
<td>92</td>
</tr>
<tr>
<td>33. Aufgabe (Nicht-relativistischer Limes für bilineare Kovarianten)</td>
<td>93</td>
</tr>
<tr>
<td>34. Aufgabe (Projektoren für Energie und Spin)</td>
<td>94</td>
</tr>
<tr>
<td>35. Aufgabe (Vollständigkeitsrelation)</td>
<td>96</td>
</tr>
<tr>
<td>10. Übung</td>
<td>97</td>
</tr>
<tr>
<td>36. Aufgabe (Gordon-Zerlegung)</td>
<td>100</td>
</tr>
<tr>
<td>37. Aufgabe (Spuren mit γ-Matrizen)</td>
<td>100</td>
</tr>
<tr>
<td>38. Aufgabe (Elektron-Positron-Paarvernichtung)</td>
<td>102</td>
</tr>
<tr>
<td>11. Übung</td>
<td>105</td>
</tr>
<tr>
<td>39. Aufgabe (β-Zerfall)</td>
<td>108</td>
</tr>
<tr>
<td>40. Aufgabe (Magnetische Resonanz)</td>
<td>108</td>
</tr>
<tr>
<td>41. Aufgabe (Wasserstoffatom im elektrischen Feld)</td>
<td>111</td>
</tr>
<tr>
<td>12. Übung</td>
<td>115</td>
</tr>
<tr>
<td>42. Aufgabe (Zweizustandssystem im äußeren Potential)</td>
<td>118</td>
</tr>
<tr>
<td>43. Aufgabe (Hamilton-Operator des freien Strahlungsfeldes)</td>
<td>122</td>
</tr>
<tr>
<td>44. Aufgabe (Kommutatorrelationen)</td>
<td>124</td>
</tr>
<tr>
<td>13. Übung</td>
<td>125</td>
</tr>
<tr>
<td>45. Aufgabe (Lebensdauer für Dipolübergänge)</td>
<td>128</td>
</tr>
<tr>
<td>46. Aufgabe (Auswahlregeln für Dipolübergänge eines harmonischen Oszillators)</td>
<td>129</td>
</tr>
<tr>
<td>47. Aufgabe (System von zwei identischen Teilchen)</td>
<td>130</td>
</tr>
<tr>
<td>48. Aufgabe (System von N nicht-wechselwirkenden identischen Bosonen)</td>
<td>136</td>
</tr>
<tr>
<td>1 Übungsklausur</td>
<td>136</td>
</tr>
<tr>
<td>1.1 Klausur A</td>
<td>136</td>
</tr>
<tr>
<td>1.2 Klausur B</td>
<td>139</td>
</tr>
</tbody>
</table>

3
1. Übung
Aufgabe 1: Pauli Matrizen

Die Pauli Matrizen sind definiert als:

\[
\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]

(a) Bestimmen Sie die Eigenwerte und die normierten Eigenvektoren.
(b) Verifizieren Sie, dass gilt:

\[
\{\sigma_i, \sigma_j\} = 2\delta_{ij}, \quad [\sigma_i, \sigma_j] = 2i\varepsilon_{ijk}\sigma_k.
\]

(c) Zeigen Sie mit Hilfe von (b), dass für beliebige Vektoren \(\vec{a}, \vec{b}\) die Identität

\[
(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b}) = \vec{a} \cdot \vec{b} I + i \vec{\sigma} \cdot (\vec{a} \times \vec{b})
\]
gilt. Dabei bezeichnet \(I\) die 2 \(\times\) 2 Einheitsmatrix.

Aufgabe 2: Drehimpulsoperator

(a) Berechnen Sie die Erwartungswerte und die mittleren Schwankungssquare (\(\Delta L_i)^2\) für die Komponenten \(L_1\) und \(L_2\) des Drehimpulsoperators in beliebigen Eigenzuständen \(|l, m\rangle\) von \(\vec{L}\) und \(L_3\).
(b) Berechnen Sie die Matrixdarstellung der Operatoren \(L_i (i = 1, 2, 3)\), wobei die Matrixelemente gegeben sind durch \(\langle l, m | L_i | l', m' \rangle\) \((m, m' = l, l - 1, \ldots, -l)\) für \(l = 1/2\) und \(l = 1\). Berechnen Sie die Matrixdarstellung von \(\vec{L}\).
(c) Ein Teilchen habe den Drehimpuls \(|\vec{L}| = \sqrt{2h}\) und für \(L_3\) sei \(h\) gemessen worden. Welche sind die möglichen Werte von \(L_1\) und mit welchen Wahrscheinlichkeiten treten Sie auf?

Aufgabe 3: Wasserstoffatom

Der Radialanteil der Wellenfunktion des Wasserstoffatoms \(\Psi_{nlm}(\vec{r}) = R_{nl}(r)Y_{lm}(\theta, \phi)\) ist gegeben durch:

\[
R_{nl}(r) = -\left(\frac{2}{a_0}\right)^{3/2}\frac{1}{n^2}\sqrt{\frac{(n-l-1)!}{2[(n+l)!]^3}} F_{nl}\left(\frac{2r}{na_0}\right), \quad \text{mit} \quad F_{nl}(\rho) = \rho^l e^{-\rho/2}L_{n+l}^{2l+1}(\rho).
\]

\(a_0 = \frac{\alpha^2}{me^2} = 0.529 \times 10^{-10} \text{ m}\) ist der Bohrsche Radius. Dabei lauten für \(p, k \in \mathbb{N}\) die Laguerre-Polynome

\[
L_p^k(\rho) = \frac{d^k}{d\rho^k} \left[e^\rho \frac{d^p}{d\rho^p}(\rho^k e^{-\rho}) \right]
\]

und erfüllen die Orthogonalitätsrelation

\[
\frac{(p-k)!}{(2p-k+1)(p!)^3} \int_0^\infty d\rho \rho^{k+1} e^{-\rho} L_p^k(\rho) L_q^l(\rho) = \delta_{pq}.
\]

Berechnen Sie die Erwartungswerte der Operatoren \(1/r\), \(1/r^2\) und \(1/r^3\) für die gebundenen Energiezustände.
• Übungsbetrieb
Die Übungen zur Vorlesung „Moderne Theoretische Physik II (Quantenmechanik II)” finden dienstags um 14:00 Uhr, um 15:45 Uhr und um 17:30 Uhr statt. Der reguläre Übungsbetrieb beginnt am 23.10.2012.
Auf jedem Übungsblatt können 10 Punkte erreicht werden.

• Anmeldung zu den Tutorien
Die Webseite wird am Mittwoch 17.10.2012 um 14:00 Uhr freigeschalten.
Ab Montag, den 22.10.2011, 14:00 Uhr hängen Listen am Eingang des Physikhochhauses aus, denen Sie Raum und Zeit Ihrer Übungsgruppe entnehmen können.

• Das Beratungstutorium findet mittwochs 15:45 - 17:15 Uhr im Raum 3.1 (Geb. 30.23) statt.

• Probeklausur

• Klausur
Die Modulklausur findet voraussichtlich am 21.02.2013 statt.
Zu Beginn des SS 13 wird ein weiterer Klausurtermin angeboten.

• Leistungsnachweise/Prüfungen
PO 2008:
Als Vorleistung zur Teilnahme an der Modulklausur müssen mindestens 50% der Punkte aus den Übungen und der Probeklausur erreicht werden. Die Modulnote wird in der Modulklausur ermittelt.

PO 2010:
Als Vorleistung zur Teilnahme an der Modulklausur müssen mindestens 50% der Punkte aus den Übungen und der Probeklausur erreicht werden. Dies stellt die erste Erfolgskontrolle dar. Die zweite Erfolgskontrolle wird erreicht durch das Bestehen der Modulklausur.

• QISPOS:
Sobald die Vorleistung in QISPOS freigeschaltet ist, wird dies auf den Übungsblättern angekündigt.
1. Aufgabe: Pauli-Matrizen

(a) Siehe Übungen oder Skript "Theoretische Physik D"

(b) Wir benutzen im folgenden die Darstellung der Paulimatrizen in der Basisdarstellung aus \(|1\rangle \) und \(|0\rangle \), also

\[
\sigma_1 = |0\rangle \langle 1| + |1\rangle \langle 0| \quad \sigma_2 = i (|1\rangle \langle 0| - |0\rangle \langle 1|) \quad \sigma_3 = |0\rangle \langle 0| - |1\rangle \langle 1| \]

Für \(i = 1 \) und \(j = 2 \) gilt:

\[
\{\sigma_1, \sigma_2\} = i (|0\rangle \langle 1| + |1\rangle \langle 0|) (|1\rangle \langle 0| - |0\rangle \langle 1|) + i (|1\rangle \langle 0| - |0\rangle \langle 1|) (|0\rangle \langle 1| + |1\rangle \langle 0|)
\]

Dann nutzen wir die Orthonormalität von \(|0\rangle \) und \(|1\rangle \), also

\[
\delta_{ij} = i (|0\rangle \langle 0| - |1\rangle \langle 1| + |1\rangle \langle 1| - |0\rangle \langle 0|) = 0 = 2\delta_{12} \mathbb{1}
\]

und stark analog

\[
[\sigma_1, \sigma_2] = i (|0\rangle \langle 1| + |1\rangle \langle 0|) (|1\rangle \langle 0| - |0\rangle \langle 1|) - i (|1\rangle \langle 0| - |0\rangle \langle 1|) (|0\rangle \langle 1| + |1\rangle \langle 0|)
\]

und wieder

\[
= i (|0\rangle \langle 0| - |1\rangle \langle 1| + |1\rangle \langle 1| + |0\rangle \langle 0|) = 2i (|0\rangle \langle 0| - |1\rangle \langle 1|) = 2i \epsilon_{123}
\]

und damit die Behauptungen. Der Rest folgt analog.

(c) Mit den Formeln aus der b) gilt vor allem für alle \(i, j \):

\[
2\sigma_i \sigma_j = \{\sigma_i, \sigma_j\} + [\sigma_i, \sigma_j] = 2\delta_{ij} \mathbb{1} + 2i \epsilon_{ijk} \sigma_k
\]

und damit

\[
(\vec{\sigma} \cdot \vec{a}) (\vec{\sigma} \cdot \vec{b}) = \left(\sum_i \sigma_i a_i \right) \left(\sum_j \sigma_j b_j \right) = \sum_{i,j} \sigma_i \sigma_j a_i b_j = \sum_{i,j} (\delta_{ij} \mathbb{1} + i \epsilon_{ijk} \sigma_k) a_i b_j
\]

wir ziehen die beiden Summanden auseinander:

\[
= \sum_{i,j} \delta_{ij} a_i b_j \mathbb{1} + \sum_{i,j} i \epsilon_{ijk} \sigma_k a_i b_j = \sum_i a_i b_i \mathbb{1} + i \sigma_k \sum_{i,j} \epsilon_{ijk} a_i b_j = \vec{a} \cdot \vec{b} \mathbb{1} + i \vec{\sigma} \cdot (\vec{a} \times \vec{b})
\]

und erhalten damit die Behauptung.
2. Aufgabe: Drehimpulsoperator

In der ganzen Aufgabe benutzen wir die Tatsachen, dass

\[L_1 = \frac{1}{2} (L_+ + L_-) \quad L_2 = \frac{1}{2i} (L_+ - L_-) \]

mit den Aufsteige- und Absteigeoperatoren, welche auf die Basisvektoren wirken wie

\[L_\pm |l, m\rangle = \hbar \sqrt{l(l+1) - m(m \pm 1)} |l, m \pm 1\rangle \]

(a) Es ist

\[2\langle L_1 \rangle = \langle l, m | (L_+ + L_-) |l, m \rangle \]

und mit den Definitionen von oben

\[= \langle l, m | \left(\hbar \sqrt{l(l+1) - m(m+1)} |l, m+1\rangle + \hbar \sqrt{l(l+1) - m(m-1)} |l, m-1\rangle \right) \]

Nun ist aber \(m - 1 \neq m \neq m + 1 \) für alle \(m \) und da die \(|l, m\rangle \) orthogonal sind, ist ganz einfach

\[\langle L_1 \rangle = 0 \]

Für \(L_2 \) analog. Für die Standardabweichung berechnen wir zuerst

\[L_1^2 = \frac{1}{4} (L_+^2 + L_-^2 + L_+ L_- + L_- L_+) \]

und daraus

\[4\langle L_1^2 \rangle = \langle l, m | \hbar^2 \left[A |l, m + 2\rangle + B |l, m - 2\rangle + \left(\sqrt{l(l+1) - m(m - 1)} \sqrt{l(l+1) - (m - 1)m} + \sqrt{l(l+1) - m(m + 1)} \sqrt{l(l+1) - (m + 1)m} \right) |l, m\rangle \right] \]

mit zwei Konstanten \(A \) und \(B \). Wieder ist

\[\langle l, m | l, m - 2 \rangle = \langle l, m | l, m + 2 \rangle = 0 \]

und damit

\[(\Delta L_1)^2 = \langle L_1^2 \rangle = \frac{\hbar^2}{4} (l(l+1) - m(m-1) + l(l+1) - m(m+1)) = \frac{\hbar^2}{2} (l(l+1) - m^2) \]
Aus Symmetriegründen ist auch

\[(\Delta L_1)^2 = (\Delta L_2)^2\]

(b) Wir wollen hier nur die Ergebnisse angeben. Die Rechnungen ergeben sich aus den Formeln von oben und den Definitionen von \(L_\pm\).

(i) Für \(l = 1\) ergeben sich die Basisvektoren

\[\{ |1, 1\rangle, |1, 0\rangle, |1, -1\rangle\}\]

und damit

\[L_1 = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad L_2 = \frac{i\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \quad L_3 = \begin{pmatrix} \hbar & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\hbar \end{pmatrix}\]

Man erhält wie erwartet

\[L^2 = 2\hbar^2 E_3\]

(ii) Für \(l = 1/2\) ergeben sich die Basisvektoren

\[\{ |1/2, 1/2\rangle, |1/2, -1/2\rangle\}\]

und

\[L_1 = \begin{pmatrix} 0 & \frac{\hbar}{2} & 0 \\ \frac{\hbar}{2} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad L_2 = \begin{pmatrix} 0 & \frac{i\hbar}{2} & 0 \\ -\frac{i\hbar}{2} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad L_3 = \begin{pmatrix} \frac{\hbar}{2} & 0 & 0 \\ 0 & 0 & -\frac{\hbar}{2} \\ 0 & 0 & 0 \end{pmatrix}\]

Wieder

\[L^2 = \frac{\hbar^2}{4} E_2\]

(c) Da \(|\vec{L}| = \sqrt{2}\hbar|\), muss

\[l = 1\]

sein. Außerdem erhält man aus dem Wert für \(L_3\)

\[m = 1\]

Das bedeutet das System befindet sich im Zustand \(|1, 1\rangle\). Wir benutzen die Matrixdarstellung von \(L_1\) von oben um die Eigenwerte und Vektoren zu berechnen.
Man erhält (wie erwartet) die Eigenwerte $0, \hbar, -\hbar$ mit den normierten Eigenvektoren
\[
|0\rangle = \frac{1}{\sqrt{2}} (|1, -1\rangle - |1, 1\rangle) \quad |\pm\hbar\rangle = \frac{1}{2} \left(|1, 1\rangle \pm \sqrt{2} |1, 0\rangle + |1, -1\rangle \right)
\]
Also ist
\[
|1, 1\rangle = \frac{1}{2} \left(|\hbar\rangle + |\hbar\rangle - \sqrt{2} |0\rangle \right)
\]
Und somit die Wahrscheinlichkeit verteilt wie folgt
\[
P_0 = 1/2 \quad P_\hbar = 1/4 \quad P_{-\hbar} = 1/4
\]

3. Aufgabe: Wasserstoffatom

Der Erwartungswert für ein beliebiges $\frac{1}{r}$ lässt sich schreiben als
\[
\langle \frac{1}{r} \rangle = \langle lmn|\frac{1}{r^i}|lmn \rangle = \int (R_{nl}(r)Y_l^m(\theta, \varphi))^* \frac{1}{r^i} R_{nl}(r)Y_l^m(\theta, \varphi) \, dx^3
\]
\[
= \int Y_l^m(\theta, \varphi)Y_l^m(\theta, \varphi)^* d\Omega \underbrace{R_{nl}^2(r)}_{=1} \frac{1}{r^i} r^2 dr
\]
\[
= \int_0^\infty R_{nl}^2(r)r^{2-i} \, dr
\]
Dabei ist $R_{nl}(r)$ definiert als
\[
R_{nl}(r) = -\left(\frac{2}{a_0 n} \right)^{\frac{3}{2}} \sqrt{\frac{(n-l-1)!}{2n ((n+l)!)^3}} F_{nl} \left(\frac{2r}{n a_0} \right)
\]
Außerdem substituieren wir
\[
\rho = \frac{2r}{n a_0}
\]
Wenn man noch das gegebene $F_{nl}(\rho)$ einsetzt, kommt man auf
\[
\langle \frac{1}{r^i} \rangle = \frac{1}{2n} \frac{(n-l-1)!}{((n+l)!)^3} \int_0^\infty \rho^{2-i} e^{-\rho} \left(L_{n+l}^{2l+1}(\rho) \right)^2 \rho^{2-i} \left(\frac{2}{n a_0} \right)^i \, d\rho
\]
Diese Gleichung lässt sich noch etwas vereinfachen, indem man \(k = 2l + 1 \) und \(p = n + l \) einsetzt. Dies führt zu

\[
\langle \frac{1}{r^i} \rangle = \frac{(p - k)!}{2n(p!)^3} \int_0^\infty \rho^{k+1-i}e^{-\rho} \left(L_p^k(\rho) \right)^2 \left(\frac{2}{na_0} \right)^i d\rho
\]

Die gegebene Orthogonalitätsrelation kann wie folgt in eine hier besser geeignete Darstellung gebracht werden:

\[
\int_0^\infty \rho^k e^{-\rho} L_p^k(\rho) L_q^k(\rho) d\rho = \delta_{pq} \frac{(p!)^3}{(p - k)!}
\]

Nun können die gesuchten Erwartungswerte mithilfe der Orthogonalitätsrelation für jedes \(i \) berechnet werden:

\[
\langle \frac{1}{r^i} \rangle_{i=0}^i = \delta_{pp} \quad \Rightarrow \quad \langle 1 \rangle = 1
\]

\[
\langle \frac{1}{r^2} \rangle_i = \frac{1}{2n na_0} \quad \Rightarrow \quad \langle \frac{1}{r^2} \rangle = \frac{1}{n^2 a_0}
\]

\[
\langle \frac{1}{r^2} \rangle_i = \frac{(p - k)!}{2n(p!)^3} \frac{4}{n^2 a_0^2} \int_0^\infty \rho^{k-1} e^{-\rho} \left(L_p^k(\rho) \right)^2 d\rho
\]

\[
= \frac{(p - k)!}{2n(p!)^3} \frac{4}{n^2 a_0^2} \left(\left[\rho^k e^{-\rho} (L_p^k(\rho))^2 \right]_0^\infty - \int_0^\infty \left(-\rho^k e^{-\rho} (L_p^k(\rho))^2 + 2\rho^k e^{-\rho} \frac{dL_p^k(\rho)}{d\rho} \right) d\rho \right)
\]

\[
= \frac{1}{n^2(2l + 1)a_0^2}
\]

\[
\langle \frac{1}{r^3} \rangle_i = \frac{(p - k)!}{2n(p!)^3} \frac{8}{n^3 a_0^3} \int_0^\infty \rho^{k-2} e^{-\rho} \left(L_p^k(\rho) \right)^2 d\rho
\]

\[
\Rightarrow \quad \langle \frac{1}{r^3} \rangle = \frac{1}{n^3 a_0^3(l + \frac{1}{2})(l + 1)}
\]

Zusatz:

\[
\langle V \rangle_{nl} = -\frac{e^2}{4\pi \varepsilon_0} \langle \frac{1}{r} \rangle_{nl} = \frac{e^2}{4\pi \varepsilon_0 a_0 n^2}
\]
2. Übung
Moderne Theoretische Physik II (Quantenmechanik II)
Institut für Theoretische Teilchenphysik

Prof. Dr. M. Steinhauser, Dr. L. Mihaila
http://www-ttp.particle.uni-karlsruhe.de/~luminita/TheoE1213

WS 12/13 – Blatt 02
Besprechung: 30.10.2012

(*) Aufgabe 1 (2P) : Teilchen mit Spin im Zentralpotential
Betrachten Sie ein Teilchen mit Spin, das sich in einem Zentralpotential \(V(r) \) befindet. Der Hamiltonoperator sei gegeben durch

\[
H = -\frac{\hbar^2}{2m} \Delta + V(r) + A(r)\vec{L} \cdot \vec{S},
\]

wobei \(m \) die Masse des Teilchens, \(\vec{S} \) der Spin, \(\vec{L} \) der Bahndrehimpuls und \(A(r) \) eine bekannte Funktion seien. Berechnen Sie \([\vec{L}, H]\) und \([\vec{S}, H]\). Zeigen Sie, dass \([\vec{J}, H] = 0\), wobei \(\vec{J} = \vec{L} + \vec{S} \).

(*) Aufgabe 2 (5P): Unabhängige harmonische Oszillatoren
Seien \(a_1^\dagger, a_1, a_2^\dagger, a_2 \) die Erzeugungs- und Vernichtungsoperatoren zweier unabhängiger eindimensionaler harmonischer Oszillatoren mit den zugehörigen Vertauschungsrelationen. Alle Operatoren verschiedener Oszillatoren vertauschen, d.h. \([a_1, a_2^\dagger] = [a_2, a_1^\dagger] = [a_1, a_2] = [a_1^\dagger, a_2^\dagger] = 0\). Da somit auch \(N_1 = a_1^\dagger a_1 \) und \(N_2 = a_2^\dagger a_2 \) vertauschen, wird der Hilbertraum durch die gemeinsamen Eigenvektoren von \(N_1 \) und \(N_2 \), \(|n_1, n_2\rangle \), aufgespannt, wobei \(N_1|n_1, n_2\rangle = n_1|n_1, n_2\rangle \) und \(N_2|n_1, n_2\rangle = n_2|n_1, n_2\rangle \) gilt. Weiter seien

\[
J_+ = \hbar a_1^\dagger a_2, \quad J_- = \hbar a_2^\dagger a_1, \quad J_z = \hbar (a_1^\dagger a_1 - a_2^\dagger a_2)/2 \quad \text{und} \quad \vec{J}^2 = J_z^2 + (J_+ J_- + J_- J_+)/2.
\]

(a) Zeigen Sie, dass die so definierten Operatoren \(J_\pm, J_z \) eine Drehimpulsalgebra erfüllen, nämlich

\[
[J_\pm, J_\pm] = \pm \hbar J_\pm, \quad [J_z, \vec{J}^2] = 0 \quad \text{und} \quad [J_+, J_-] = 2\hbar J_z.
\]

(b) Wie wirken \(J_+, J_- \) und \(J_z \) auf die Zustände \(|n_1, n_2\rangle \)? Geben Sie die Eigenwerte von \(J_z \) und \(\vec{J}^2 \) zu den Eigenzuständen \(|n_1, n_2\rangle \) an.

(c) Drücken Sie die Drehimpulsquantenzahlen \(j \) und \(m \) durch \(n_1 \) und \(n_2 \) aus. Wie erhält man den Zustand \(|j, m\rangle \) aus dem Vakuumzustand der beiden Oszillatoren \(|n_1 = 0, n_2 = 0\rangle \)?

\textbf{Hinweis:} \(j \) und \(m \) sind definiert durch \(\vec{J}^2 |j, m\rangle = \hbar^2 (j+1)|j, m\rangle \), \(J_z |j, m\rangle = \hbar m |j, m\rangle \).

(*) Aufgabe 3 (3P): Matrixdarstellung des Spinsoperators \(\vec{S}^2 \)
Betrachten Sie ein System aus zwei Spin 1/2-Teilchen. Der Zustandsraum eines solchen System ergibt sich aus dem Produktraum der einzelnen Spinräumen. Eine Orthonormalbasis dieses Raums lautet

\[
\{|\varepsilon_1, \varepsilon_2\rangle\} = \{\pm, \pm, \pm, \pm, \pm, \pm\},
\]

wobei die Vektoren \(|\varepsilon_1, \varepsilon_2\rangle \) die Eigenvektoren der vier Observablen \(\vec{S}_1^2, S_{1z}, \vec{S}_2^2, S_{2z} \) bezeichnen. Betrachten Sie nun den Gesamtspin des Systems \(\vec{S} = \vec{S}_1 + \vec{S}_2 \).

(a) Zeigen Sie, dass die Operatoren \(\{\vec{S}_1^2, \vec{S}_2^2, \vec{S}_2^2, S_{2z}\} \) paarweise vertauschen.

(b) Berechnen Sie die Matrixdarstellung von \(\vec{S}^2 \) in der Basis \(\{|\varepsilon_1, \varepsilon_2\rangle\} \).
(c) Finden Sie eine Basis, in der \vec{S}_2 diagonal ist und geben Sie die Eigenzustände und ihre Entartung an.

Aufgabe 4: Zwei-Spin System

Ein System bestehe aus zwei verschiedenen Teilchen mit jeweils Spin $S = 1/2$. Seien $\vec{r} = \vec{r}_1 - \vec{r}_2$ der relative Orstvektor und \vec{S}_1 und \vec{S}_2 die Spinoperatoren.

(a) Zeigen Sie, dass gilt

\[
3 \frac{(\vec{S}_1 \cdot \vec{r}) (\vec{S}_2 \cdot \vec{r})}{r^2} - \vec{S}_1 \cdot \vec{S}_2 = \frac{1}{2} \left(3 \frac{(\vec{S} \cdot \vec{r})^2}{r^2} - \vec{S}^2 \right),
\]

wobei $\vec{S} = \vec{S}_1 + \vec{S}_2$ der Gesamtspinoperator ist.

(b) Der Hamiltonoperator eines solchen Systems sei gegeben durch

\[
H_1 = a \vec{S}_1 \cdot \vec{S}_2 + b (S_{1z} + S_{2z}).
\]

Bestimmen Sie die Eigenwerte und Eigenvektoren von H, wobei a und b Konstanten sind.

(c) Welche Energieeigenwerte bekommen Sie für den Hamiltonoperator

\[
H_2 = a \vec{S}_1 \cdot \vec{S}_2 + b (S_{1z} - S_{2z}).
\]

Bestimmen Sie die Eigenvektoren.

• Das **Beratungstutorium** findet mittwochs 09:45 - 10:15 Uhr im Raum 10.1 (Geb. 30.23) statt.
4. Aufgabe: Teilchen mit Spin im Zentralpotential

Wir definieren

\[H_1 = -\frac{\hbar^2}{2m} \Delta + V(r) \quad H_2 = A(r) \vec{L} \cdot \vec{S} \]

\(H_1 \) ist dabei der Hamiltonoperator eines Teilchens ohne Spin in einem Zentralfeld (\(V \) hängt nur von \(r \) ab). Wie wir wissen, vertauscht der Bahndrehimpuls \(\vec{L} \) dann mit dem Hamiltonoperator. Da \(H_1 \) außerdem nur im Raum der Bahnbewegung wirkt, vertauscht auch der Spindrehimpuls \(\vec{S} \) mit \(H_1 \). Außerdem hängt auch \(A(r) \) nur von der radialen Komponente der Bahn ab und deshalb vertauscht \(A(r) \) mit \(\vec{L} und \vec{S} \). Es ist also

\[[\vec{L}, H_1] = [\vec{L}, H_2] = A(r) [\vec{L}, \vec{L} \cdot \vec{S}] = A(r) [\vec{L}, L_1 S_1 + \ldots] = A(r) \left[\vec{L}, \sum_i L_i S_i \right] \]

Wir berechnen für jede Komponente \(L_j \) einzeln. Es gilt für jedes \(j = 1, 2, 3 \):

\[[\vec{L}, H_j] = [L_j, H] = A(r) \left(L_j, \sum_i L_i S_i \right) = A(r) \sum_i L_i \left[L_j, S_i \right] = A(r) \sum_i L_i \left[L_j, S_i \right] = A(r) \sum_k \varepsilon_{jik} L_k S_i \]

Dabei wurde benutzt, dass die Komponenten des Spins mit denen des Bahndrehimpulses vertauschen (da sie in verschiedenen Räumen wirken). Analog gehen wir für den Spin vor:

\[[\vec{S}, H_j] = A(r) \left(S_j, \sum_i L_i S_i \right) = A(r) \sum_i L_i \left[S_j, S_i \right] + [S_j, L_i] S_i = A(r) \sum_k \varepsilon_{jik} L_k S_i \]

Die Ergebnisse für \([\vec{L}, H]\) und \([\vec{S}, H]\) ergeben sich einfach durch Zusammenfügen der einzelnen Komponenten. Vor allem ist dann für jedes \(j = 1, 2, 3 \):

\[[\vec{J}, H_j] = [\vec{L}, H_j] + [\vec{S}, H_j] = A(r) \sum_i \sum_k \varepsilon_{jik} L_k S_i + \sum_i \sum_k \varepsilon_{jik} L_k S_i \]

Im letzten Summanden führen wir eine Variablensubstitution \(i \) auf \(k \) und \(k \) auf \(i \) vor (was wir dürfen, da die Summationsbereiche gleich sind und die Summen trivialerweise
vertauscht werden dürfen). Also

\[A(r) \sum_i \sum_k (\varepsilon_{ijk} L_k S_i + \varepsilon_{jik} L_k S_i) = A(r) \sum_i \sum_k L_k S_i (\varepsilon_{ijk} + \varepsilon_{jki}) = 0 \]

aufgrund der Vertauschungseigenschaften des \(\varepsilon \)-Tensors. Es ist also

\[[\vec{J}, H] = 0 \]

5. Aufgabe: Unabhängige harmonische Oszillatoren

Wir benutzen in der ganzen Aufgabe die Kommutatorrelationen

\[[a_i, a_i^\dagger] = 1 \quad i = 1, 2 \]

(a) Es ist

\[\frac{2}{\hbar^2} [J_z, J_+] = [a_1^\dagger a_1 - a_2^\dagger a_2, a_1^\dagger a_2 - a_2^\dagger a_1^\dagger a_1 - a_2^\dagger a_2 a_1 a_2 - a_1^\dagger a_2^\dagger a_2 a_2] = \frac{2}{\hbar^2} [J_z, J_-] = \frac{\hbar}{2} \left([a_1^\dagger, a_1] + [a_2^\dagger, a_2] \right) a_2 = \frac{2}{\hbar} J_+ \]

und damit die Behauptung. Analog zeigt man auch

\[[J_z, J_-] = \frac{\hbar}{2} \left(a_1^\dagger a_1^\dagger a_1 a_1 - a_2^\dagger a_2^\dagger a_2 a_2 + a_2^\dagger a_2^\dagger a_2 a_2 - a_1^\dagger a_1^\dagger a_2 a_2 \right) = \frac{\hbar}{2} \left([a_1^\dagger, a_1] + [a_2^\dagger, a_2] \right) a_1 = -\hbar J_- \]

Aus den Eigenschaften des Kommutators folgt zuerst:

\[2[J_z, J_-] = 2[J_z, J_-] = 2[J_z, J_-] = 2[J_z, J_-] = 0 \]

und dann mit dem Ergebnis von oben:

\[2[J_z, \vec{J}^2] = \cdots = \hbar J_+ J_- - \hbar J_+ J_- + \hbar J_- J_+ - \hbar J_- J_+ = 0 \]
Für die letzte Relation benutzen wir

\[[a_i, a_i^\dagger] = 1 \implies a_i a_i^\dagger = 1 + a_i^\dagger a_i \quad i = 1, 2\]

und erhalten

\[[J_+, J_-] = \hbar^2 \left(a_1^\dagger a_2 a_2^\dagger a_1 - a_2^\dagger a_1 a_1^\dagger a_2 \right) = \hbar^2 \left(a_1^\dagger a_1 a_2^\dagger a_2 - a_1 a_1^\dagger a_2^\dagger a_2 \right) \]

\[= \hbar^2 \left(a_1 a_1 (1 + a_2^\dagger a_2) - (1 + a_1 a_1^\dagger) a_2^\dagger a_2 \right) = \hbar^2 (a_1 a_1 - a_2^\dagger a_2) = 2 \hbar J_z\]

(b) Wir wissen über die Operatoren \(a_i\):

\[a_i^\dagger |n_i\rangle = \sqrt{n_i + 1} |n_i + 1\rangle \quad a_i |n_i\rangle = \sqrt{n_i} |n_i - 1\rangle \]

deshalb gilt:

\[J_+ |n_1, n_2\rangle = \hbar a_1^\dagger \sqrt{n_2} |n_1, n_2 - 1\rangle = \hbar \sqrt{n_1 + 1} \sqrt{n_2} |n_1 + 1, n_2 - 1\rangle \]
\[J_- |n_1, n_2\rangle = \hbar a_2^\dagger \sqrt{n_1} |n_1 - 1, n_2\rangle = \hbar \sqrt{n_2 + 1} \sqrt{n_1} |n_1 - 1, n_2 + 1\rangle \]
\[J_z |n_1, n_2\rangle = \frac{\hbar}{2} \left(a_1^\dagger a_1 - a_2^\dagger a_2 \right) |n_1, n_2\rangle = \hbar \left(\frac{n_1}{2} - \frac{n_2}{2} \right) |n_1, n_2\rangle \]
\[\vec{J}^2 |n_1, n_2\rangle = \frac{\hbar^2}{4} (n_1 - n_2)^2 + \frac{\hbar^2}{2} \left(\sqrt{n_1} \sqrt{n_2} + \sqrt{n_1} \sqrt{n_2} + 1 + \sqrt{n_1 + 1} \sqrt{n_2} \sqrt{n_1 + 1} \sqrt{n_2} \right) |n_1, n_2\rangle \]
\[= \frac{\hbar^2}{4} \left(n_1^2 + n_2^2 + 2n_1 n_2 + 2n_1 + 2n_2 \right) |n_1, n_2\rangle = \hbar^2 \left[\left(\frac{n_1}{2} + \frac{n_2}{2} \right)^2 + \frac{n_1}{2} + \frac{n_2}{2} \right] \]

Somit sind auch die Eigenwerte

\[\hbar \left(\frac{n_1}{2} - \frac{n_2}{2} \right) \quad \hbar^2 \left[\left(\frac{n_1}{2} + \frac{n_2}{2} \right)^2 + \frac{n_1}{2} + \frac{n_2}{2} \right] \]

bekannt.

(c) Setzen wir einfach an:

\[\vec{J}^2 |j, m\rangle = \hbar^2 (j^2 + j) |j, m\rangle \quad J_z |j, m\rangle = \hbar m |j, m\rangle \]

und da wir schon wissen, dass auch die \(|n_1, n_2\rangle\) Eigenzustände zu \(\vec{J}^2\) und \(J_z\) sind.

Aus den Gleichungen oben folgt:

\[\hbar \left(\frac{n_1}{2} - \frac{n_2}{2} \right) = \hbar m \implies m = \frac{n_1}{2} - \frac{n_2}{2} \]
\[\hbar^2 \left[\left(\frac{n_1}{2} + \frac{n_2}{2} \right)^2 + \frac{n_1}{2} + \frac{n_2}{2} \right] = \hbar^2(j^2 + j) \implies j = \frac{n_1}{2} + \frac{n_2}{2} \]

Somit gilt auch
\[n_1 = j + m \quad n_2 = j - m \]

Startet man also vom Zustand \(|n_1 = 0, n_2 = 0\rangle\), so erhält man den Zustand \(j, m\) durch \(j + m\)-maliges Anwenden von \(a_1^\dagger\) und \(j - m\)-maliges Anwenden von \(a_2^\dagger\). Man erhält dann einen Zustand der Form \(|j + m, j - m\rangle\), der gerade
\[J^2 |j + m, j - m\rangle = \hbar^2 j(j+1) |j + m, j - m\rangle \quad J_z |j + m, j - m\rangle = \hbar m |j + m, j - m\rangle \]
erfüllt. Beim Anwenden der Erzeugungsoperatoren sind jedoch Vorfaktoren entstanden, durch die wieder geteilt werden muss. Es ist deshalb:
\[|j, m\rangle = \frac{1}{\sqrt{(j+m)!(j-m)!}} \left(a_1^\dagger \right)^{j+m} \left(a_2^\dagger \right)^{j-m} |n_1 = 0, n_2 = 0\rangle \]

6. Aufgabe: Matrixdarstellung des Spinoperators \(\vec{S}^2 \)

(a) Basis: \(\{|\varepsilon_1, \varepsilon_2\rangle\} = \{|++\rangle, |+-\rangle, |+-\rangle, |--\rangle\} \)

Die Spins lassen sich schreiben als
\[\vec{S} = \vec{S}_1 + \vec{S}_2 \quad S_z = S_{1z} + S_{2z} \]

Erstens gilt allgemein
\[[S_{1i}, S_{2j}] = 0 \]
da \(S_1\) und \(S_2\) auf verschiedenen Räumen wirken. Deshalb ist auch
\[[\vec{S}_1, \vec{S}_2] = 0 \]

Für den Kommutator des Gesamtspins ergibt sich
\[[\vec{S}_1^2, \vec{S}_2^2] = [\vec{S}_1^2, \vec{S}_1^2 + \vec{S}_2^2 + 2\vec{S}_1\vec{S}_2] = 2[\vec{S}_1^2, \vec{S}_1\vec{S}_2] \]
\[= 2(S_{ij}[\vec{S}_{ij}, S_{2j}] + [\vec{S}_{1i}^2, S_{ij}]S_{2j}) = 0 \]
da \(\vec{S}_1\) die Spinalgebra erfüllt. Analog:
\[[\vec{S}_2^2, \vec{S}_1^2] = 0 \]
Ebenfalls folgt wegen der Spinalgebra für S_z:

$$[S^2_z, S_z] = [S^2_{1z}, S_{1z}] + [S^2_{2z}, S_{2z}] = 0$$

Analog:

$$[S^2_z, S_z] = 0$$

Als letztes bleibt $[S^2_z, S_z] = 0$ zu zeigen. Hierzu teilt man die Spins einfach wieder in alle Komponenten auf:

$$[S^2_z, S_z] = [S^2_{1z} + S^2_{2z} + 2S^1_z S^2_z, S_{1z} + S_{2z}] = 2([S^2_{1z} S_{1z}]+[S^2_{2z}, S_{2z}]) = 2(S_{2i}[S_{1i}, S_{1z}]+S_{1i}[S_{2i}, S_{2z}]) = 2(S_{2i}i\hbar\varepsilon_{izj}S_{1j}+S_{1i}i\hbar\varepsilon_{izj}S_{2j})$$

(b) Aus vorigen Betrachtungen von Spinräumen wissen wir:

$$S^z \mid \epsilon \rangle = \hbar \frac{\epsilon}{2} \mid \epsilon \rangle \quad S^x \mid \epsilon \rangle = \frac{\hbar}{2} \mid \tau \rangle \quad S^y \mid \epsilon \rangle = I_{\epsilon} \hbar \frac{\epsilon}{2} \mid \tilde{\epsilon} \rangle$$

wobei τ der Wert ist, der ϵ gerade nicht ist. Somit lässt sich die Matrixdarstellung aus

$$\vec{S}^2 = S^2_1 + S^2_2 + 2(S^1_x S^2_x + S^1_y S^2_y + S^1_z S^2_z)$$

berechnen. Dies kann man umschreiben zu

$$\vec{S}^2 = \left(\frac{3}{4} \hbar^2 \mathbf{1}_1\right) \otimes \mathbf{1}_2 + \mathbf{1}_1 \otimes \left(\frac{3}{4} \hbar^2 \mathbf{1}_2\right) + 2\left(\frac{\hbar^2}{4} \sigma_{x,1} \otimes \sigma_{x,2} + \frac{\hbar^2}{4} \sigma_{y,1} \otimes \sigma_{y,2} + \frac{\hbar^2}{4} \sigma_{z,1} \otimes \sigma_{z,2}\right)$$

$$= 2 \cdot \frac{3}{4} \hbar^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} + \hbar^2 \frac{2}{2} \left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \ldots\right)$$

wobei noch analog die Paulimatrizen σ_y und σ_z auf dieselbe Art eingesetzt werden. Man erhält:

$$\vec{S}^2 = \hbar^2 \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

nach einfacher Rechnung.

(c) Offensichtlich ist die Matrix im ersten und letzten Block schon diagonalisiert. Wir
setzen deshalb als die ersten beiden Eigenvektoren direkt
\[|1\rangle = |++\rangle \quad |2\rangle = |--\rangle \]
mit dem dazugehörigen Eigenwert 2 an. Für den mittleren Block
\[M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \]
erhält man (offensichtlich) als Eigenvektoren
\[|3\rangle = |+-\rangle + |--\rangle \quad |4\rangle = |+-\rangle - |--\rangle \]
mit den Eigenwerten 2 und 0. In dieser Basis (jetzt normierten)
\[\{ |++\rangle , |--\rangle , \frac{1}{\sqrt{2}} (|+-\rangle + |--\rangle) , \frac{1}{\sqrt{2}} (|+-\rangle - |--\rangle) \} \]
hat \(\vec{S}^2 \) Diagonalgestalt mit
\[\vec{S}^2 = \hbar^2 \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \]
Der Eigenwert 2 hat also eine 3-fache Entartung, während der Eigenwert 0 nicht entartet ist.

Bemerkung: Es gilt natürlich (um in der alten Schreibweise zu bleiben)
\[|++\rangle = |1,1\rangle \quad |--\rangle = |1,-1\rangle \quad \frac{1}{\sqrt{2}} (|+-\rangle + |--\rangle) = |1,0\rangle \quad \frac{1}{\sqrt{2}} (|+-\rangle - |--\rangle) = |0,0\rangle \]

7. **Aufgabe: Zwei-Spin-System**

(a) Es wird die rechte Seite umgeformt, sodass wir dann auf die Schreibweise der linken Seite kommen:
\[\frac{1}{2} \left(3 \left(\frac{\vec{S}_1 \vec{r} + \vec{S}_2 \vec{r}}{r^2} \right)^2 - (\vec{S}_1 + \vec{S}_2)^2 \right) = \frac{1}{2} \left(3 \left(\frac{\vec{S}_1 \vec{r}}{r^2} \right)^2 + \left(\vec{S}_2 \vec{r} \right)^2 + 2(\vec{S}_1 \vec{r})(\vec{S}_2 \vec{r}) - \vec{S}_1^2 - \vec{S}_2^2 - 2\vec{S}_1 \vec{S}_2 \right) \]
Hierbei verwenden wir folgenden Zusammenhang:

\[
(\vec{S}_1 \vec{r})^2 = \sum_i \sum_j S_{1i} r_i S_{1j} r_j = \sum_i \sum_j S_{1i} r_i S_{1j} r_j \delta_{ij} + S_{1i} r_i S_{1j} r_j (1 - \delta_{ij})
\]

\[
= \sum_i S_{1i}^2 r_i^2 = \sum_i \left(\frac{\hbar}{2} \sigma_i \right)^2 r_i^2 = \sum_i \frac{\hbar^2}{4} r_i^2 = \frac{\hbar^2}{4} r^2
\]

und

\[
S_{11}^2 = \frac{3}{4} \hbar^2
\]

Dies wird in die rechte Seite eingesetzt und es folgt:

\[
\frac{1}{2} \left(\frac{\hbar^2}{4} r^2 + \frac{\hbar^2}{4} r^2 + 2(\vec{S}_1 \vec{r}) (\vec{S}_2 \vec{r}) - \frac{3}{4} \hbar^2 \cdot 2 - 2 \vec{S}_1 \vec{S}_2 \right)
\]

welches nach einigem Kürzen der linken Seite entspricht und somit die Behauptung bewiesen wurde.

(b) Der gegebene Hamiltonoperator \(H_1 = a\vec{S}_1 \vec{S}_2 + bS_z \) kann umgeschrieben werden mit

\[
\vec{S}_1 \vec{S}_2 = \frac{\vec{S}_3^2 - \vec{S}_1^2 - \vec{S}_2^2}{2}
\]

Es folgt hieraus

\[
[H_1, \vec{S}_2] = \frac{a}{2} \left([\vec{S}_2^2, \vec{S}_2] - [\vec{S}_1^2, \vec{S}_2] - [\vec{S}_2, \vec{S}_2^2] \right) + b[S_z, \vec{S}_2] = 0 \quad [H_1, S_z] = 0
\]

Dies wissen wir aus Aufgabe 3 auf dem Übungsblatt. Für die Eigenzustände werden gewählt:

\[
\{|s, m\} = \{|1, 1\}, |1, 0\}, |1, -1\}, |0, 0\}\}
\]

Die zugehörigen Eigenwerte berechnen sich aus dem Hamiltonoperator:

\[
H |s, m\rangle = \frac{a}{2}(\vec{S}_3^2 - \vec{S}_1^2 - \vec{S}_2^2) |s, m\rangle + bS_z |s, m\rangle
\]

\[
= \frac{a\hbar^2}{2} \left(s(s+1) - \frac{3}{2} \right) |s, m\rangle + b\hbar m |s, m\rangle
\]

Diese haben die Werte

\[
\left\{ \frac{a\hbar^2}{4} + b\hbar, \frac{a\hbar^2}{4} - b\hbar, \frac{a\hbar^2}{4} - \frac{3a}{4} \hbar^2 \right\}
\]

21
(c) Nun müssen S_{1z} und S_{2z} getrennt voneinander anstelle von S_z betrachtet werden.

\[
H_2 = \frac{a}{2}(\vec{S}^2 - \vec{S}_1^2 - \vec{S}_2^2) + b(S_{1z} - S_{2z})
\]

Deshalb eignet sich hier die Rechnung über Matrizen. Als Basis der Matrixdarstellung wird \{\ket{++}, \ket{+-}, \ket{-+}, \ket{--}\} gewählt. Es gilt:

\[
\vec{S}_1 \vec{S}_2 = \frac{\hbar^2}{2} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} - \frac{3}{4} \cdot 2 \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \frac{\hbar^2}{4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
\]

\[
S_{1z} - S_{2z} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} - \frac{\hbar}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = \hbar \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
\]

woraus für den Hamiltonoperator folgt:

\[
H_2 = \frac{\hbar}{4} \begin{pmatrix} a\hbar & 0 & 0 & 0 \\ 0 & -a\hbar + 4b & 2a\hbar & 0 \\ 0 & 2a\hbar & -a\hbar - 4b & 0 \\ 0 & 0 & 0 & a\hbar \end{pmatrix}
\]

Die Eigenwerte hierzu sind

\[
\left\{ \frac{\hbar^2 a}{4}, \frac{\hbar^2 a}{4}, \frac{\hbar^2 a}{4} \left(-1 + 2 \sqrt{1 + \frac{4b^2}{a^2\hbar^2}} \right), \frac{\hbar^2 a}{4} \left(-1 - 2 \sqrt{1 + \frac{4b^2}{a^2\hbar^2}} \right) \right\}
\]

mit den zugehörigen Eigenvektoren

\[
\left\{ \ket{++}, \ket{--}, \frac{2b - \sqrt{4b^2 + a^2\hbar^2}}{a\hbar} (\ket{+-} + \ket{-+}), \frac{2b + \sqrt{4b^2 + a^2\hbar^2}}{a\hbar} (\ket{+-} + \ket{-+}) \right\}
\]

3. Übung
(*) Aufgabe 1 (7P): Clebsch-Gordan-Koeffizienten
(a) Betrachten Sie die Addition zweier Drehimpulse $j_1 = 1$ und $j_2 = 1$. Berechnen Sie die Clebsch-Gordan-Koeffizienten, die den Entwicklungskoeffizienten des Basiswechsels vom Tensorproduktraum $\{|j_1, m_1\rangle \otimes |j_2, m_2\rangle\}$ in den Raum der Eigenzustände des Gesamtdrehimpulses $\{|J, M\rangle\}$ entsprechen. Verwenden Sie dazu die Phasenkonvention $\langle j_1, j_2; j_1, J - j_1|J, J\rangle > 0$.

(b) Leiten Sie für beliebige Drehimpulse j_1 und j_2 folgende Rekursionsformeln her. Ausgehend von $\langle j_1, j_2; j_1, j_2|J, J\rangle = 1$ können Sie damit alle anderen Clebsch-Gordan-Koeffizienten berechnen.

\[
a(J, M)\langle j_1, j_2; m_1, m_2|J, M\rangle = a(j_1, m_1)\langle j_1, j_2; m_1 + 1, m_2|J, M + 1\rangle \\
+ a(j_2, m_2)\langle j_1, j_2; m_1 + 1, m_2|J, M + 1\rangle ,
\]

\[
a(J, M - 1)\langle j_1, j_2; m_1, m_2|J, M\rangle = a(j_1, m_1 - 1)\langle j_1, j_2; m_1 - 1, m_2|J, M - 1\rangle \\
+ a(j_2, m_2 - 1)\langle j_1, j_2; m_1 - 1, m_2|J, M - 1\rangle ,
\]

wobei $a(p, q) = \sqrt{p(p + 1) - q(q + 1)}$. Kontrollieren Sie damit Ihre Ergebnisse aus Aufgabenteil (a).

Hinweis: Fangen Sie mit dem Matrixelement

\[
\langle j_1, j_2; m_1, m_2|J_\pm, J, M\rangle \quad \text{mit} \quad (J_\pm = J_1\pm + J_2\pm)
\]

an und wenden Sie den Operator J_\pm einmal nach links und einmal nach rechts an.

Aufgabe 2: Reduzible Tensoren
$
\vec{v}$ und \vec{w} seien Vektoren, die sich unter Drehungen R folgendermaßen transformieren

\[
v_i' = \sum_k R_{ik}v_k , \quad w_i' = \sum_k R_{ik}w_k .
\]

(a) Zeigen Sie, dass die Matrix $T_{ij} = v_i\omega_j$ geschrieben werden kann als

\[
T_{ij} = \frac{1}{3}\text{Tr}(T)\delta_{ij} + \frac{1}{2}(T_{ij} - T_{ji}) + \frac{1}{2}\left(T_{ij} + T_{ji} - \frac{2}{3}\text{Tr}(T)\delta_{ij}\right) ,
\]

wobei $\text{Tr}(M)$ die Spur einer Matrix M bezeichnet.

(b) Zeigen Sie, dass die drei Anteile auf der rechten Seite von Gl. (1) separat invariant unter Drehungen sind.

(*) Aufgabe 3 (3P): Spin-Singulett- und Triplett-Zustände
Betrachten Sie ein System von zwei Spin-$\frac{1}{2}$-Teilchen. Zeigen Sie, dass die Spin-Singulett- und Triplett-Zustände separat invariant unter Drehungen sind und somit eine irreduzible Zerlegung des Tensorprodukts $|\varepsilon_1\rangle \otimes |\varepsilon_2\rangle$ mit $|\varepsilon_i\rangle \in \{+, -\}$ darstellen.

Hinweis: Drehungen im zweidimensionalen Raum der Spin-$\frac{1}{2}$-Teilchen werden durch $R = e^{i\frac{\pi}{2}\hat{n}\cdot\vec{\sigma}}$ beschrieben, wobei \hat{n} die Drehachse, ϕ den Drehwinkel und $\vec{\sigma}$ die Pauli Matrizen bezeichnen.
Aufgabe 4: Vektoroperatoren

Betrachten Sie ein spinloses Teilchen mit Bahndrehimpuls \vec{L} und einen Operator \vec{A} dessen Komponenten folgenden Vertauschungsrelationen genügen

$$[L_i, A_j] = i\hbar \varepsilon_{ijk} A_k ,$$

wobei ε_{ijk} den Levi-Civita-Tensor bezeichnet.

(a) Benutzen Sie das (allgemeine) Wigner-Eckart-Theorem, um die Matrixelemente $\langle lm | A^{(1)}_q | l'm' \rangle$, mit $q = -1, 0, 1$, zu berechnen. Hierbei bezeichnet $\{|lm\}\rangle$ die Standardbasis von gemeinsamen Eigenzuständen zu \vec{L}^2 und L_z und die Komponenten $A^{(1)}_q$ sind folgendermassen definiert

$$A^{(1)}_{-1} = \frac{1}{\sqrt{2}} (A_x - i A_y), \quad A^{(1)}_{0} = A_z, \quad A^{(1)}_{1} = -\frac{1}{\sqrt{2}} (A_x + i A_y).$$

Leiten Sie die Auswahlregeln, die dieser Operator in der Basis $\{|lm\}\rangle$ erfüllt, her. (Mit anderen Worten: unter welchen Bedingungen verschwinden die Matrixelemente $\langle lm | A^{(1)}_q | l'm' \rangle$ nicht.)

(b) Betrachten Sie nun den Fall $\vec{A} = \vec{L}$. Berechnen Sie explizit die dazugehörige reduzierte Matrixelemente $\langle l||L^{(1)}||l'\rangle$.

8. Aufgabe: Clebsch-Gordan-Koeffizienten

Wir benutzen

\[J^- |j, m\rangle = \hbar \sqrt{(j + m)(j - m + 1)} |j, m - 1\rangle \]

jeweils im eigenen Raum und

\[J^- = J_{1-} + J_{2-} \]

(a) Wir arbeiten den Algorithmus ab:

(1) Der höchste mögliche Wert für \(J \) ist 2. Deshalb setzen wir:

\[|2, 2\rangle = |1, 1, 1, 1\rangle \]

(2) Wir benutzen \(J^- \):

\[J^- |2, 2\rangle = \hbar \sqrt{4 \cdot 1} |2, 1\rangle = 2\hbar |2, 1\rangle \]

und gleichzeitig:

\[J^- |2, 2\rangle = J^- |1, 1, 1, 1\rangle = \hbar \sqrt{2 \cdot 1} |1, 1, 0, 1\rangle + \hbar \sqrt{2 \cdot 1} |1, 1, 1, 0\rangle \]

Daraus folgern wir:

\[|2, 1\rangle = \frac{1}{\sqrt{2}} (|1, 1, 0, 1\rangle + |1, 1, 1, 0\rangle) \]

(3) Wir wenden weiter \(J^- \) auf beiden Seiten an:

\[J^- |2, 1\rangle = \hbar \sqrt{3 \cdot 2} |2, 0\rangle \]

\[J^- |2, 2\rangle = \hbar \sqrt{5 \cdot 1} |2, -1\rangle = \hbar \sqrt{5} \left(\sqrt{2} |1, 1, -1, 1\rangle + 2 \sqrt{2} |1, 1, 0, 0\rangle + \sqrt{2} |1, 1, 1, -1\rangle \right) \]

und daraus:

\[|2, 0\rangle = \frac{1}{\sqrt{6}} (|1, 1, -1, 1\rangle + 2 |1, 1, 0, 0\rangle + |1, 1, 1, -1\rangle) \]

Analog geht man weiter vor und wendet \(J^- \) insgesamt noch zweimal an. Man erhält:

\[|2, -1\rangle = \frac{1}{\sqrt{2}} (|1, 1, -1, 0\rangle + |1, 1, 0, -1\rangle) \quad |2, -2\rangle = |1, 1, -1, -1\rangle \]

(4) Wir vermindern \(J \) um eins \((J = 1) \) und wählen den Vektor \(|1, 1\rangle\) orthogonal zu \(|2, 1\rangle\) als Linearkombination von \(|1, 1, 0, 1\rangle\) und \(|1, 1, 1, 0\rangle\). Aufgrund der
Phasenkonvention ist

\[|1, 1\rangle = \frac{1}{\sqrt{2}} \left(|1, 1, 1, 0\rangle - |1, 1, 0, 1\rangle \right) \]

(5) Wir wiederholen das Verfahren von oben durch mehrmaliges Anwenden von \(J_- \):

\[J_- |1, 1\rangle = \hbar \sqrt{2} |1, 0\rangle \quad J_- |1, 1\rangle = \frac{\hbar}{\sqrt{2}} \left(\sqrt{2} |1, 1, 1, -1\rangle - \sqrt{2} |1, 1, -1, 1\rangle \right) \]

Also

\[|1, 0\rangle = \frac{1}{\sqrt{2}} \left(|1, 1, 1, -1\rangle - |1, 1, -1, 1\rangle \right) \]

und wieder analog:

\[|1, -1\rangle = \frac{1}{\sqrt{2}} \left(|1, 1, 0, -1\rangle - |1, 1, -1, 0\rangle \right) \]

(6) Schließlich müssen wir noch \(|0, 0\rangle \) als Linearkombination von \(|1, 1, -1, 1\rangle, |1, 1, 0, 0\rangle \) und \(|1, 1, 1, -1\rangle \) wählen und gleichzeitig noch orthogonal zu \(|1, 0\rangle \) und \(|2, 0\rangle \). Außerdem muss die Phasenkonvention erfüllt sein. Wir wählen deshalb:

\[|0, 0\rangle = \frac{1}{\sqrt{3}} \left(|1, 1, -1, 1\rangle + |1, 1, 1, -1\rangle - |1, 1, 0, 0\rangle \right) \]

Insgesamt haben wir also die folgenden CGK erhalten. Alle hier nicht genannten sind Null.
(b) Wir benutzen zusätzlich noch:

\[J_{\pm} |J, M\rangle = \hbar \sqrt{(j \mp m)(j \pm m + 1)} |J, M \pm 1\rangle \]

Die Wurzel entspricht gerade \(a(J, M)\) für \(J_{+}\) und \(a(J, M - 1)\) für \(J_{-}\) nach Definition von \(a\). Dann ist:

\[J_{\pm} |J, M\rangle = \begin{cases}
 a(J, M) |J, M + 1\rangle \\
 a(J, M - 1) |J, M - 1\rangle
\end{cases} \]

und (da sich beim hermitesch konjugieren gerade \(J_{+}\) zu \(J_{-}\) tauscht):

\[\langle j_1, j_2, m_1, m_2 | J_{\pm} = \begin{cases}
 a(j_1, m_1 - 1) \langle j_1, j_2, m_1 - 1, m_2 | + a(j_2, m_2 - 1) \langle j_1, j_2, m_1, m_2 - 1| \\
 a(j_1, m_1) \langle j_1, j_2, m_1 + 1, m_2 | + a(j_2, m_2) \langle j_1, j_2, m_1, m_2 + 1|
\end{cases} \]
Da es natürlich egal ist, in welche Richtung J_{\pm} angewendet wird, ist vor allem:

$$a(J, M) \langle j_1, j_2, m_1, m_2 | J, M + 1 \rangle =$$

$$a(j_1, m_1 - 1) \langle j_1, j_2, m_1 - 1, m_2 | J, M \rangle + a(j_2, m_2 - 1) \langle j_1, j_2, m_1, m_2 - 1 | J, M \rangle$$

und

$$a(J, M - 1) \langle j_1, j_2, m_1, m_2 | J, M - 1 \rangle =$$

$$a(j_1, m_1) \langle j_1, j_2, m_1 + 1, m_2 | J, M \rangle + a(j_2, m_2) \langle j_1, j_2, m_1, m_2 + 1 | J, M \rangle$$

Diese Beziehungen sind jetzt für alle M, m_1, m_2 richtig, solange $|M| < J$ und die selben Bedingungen für m_1 und m_2 gelten. Die Wahl von M, m_1, und m_2 war hier noch beliebig. Vor allem gelten die Beziehungen immer noch, wenn wir von M auf $M - 1$ (im ersten Fall) oder auf $M + 1$ (im zweiten Fall) übergehen:

$$a(J, M - 1) \langle j_1, j_2, m_1, m_2 | J, M \rangle =$$

$$a(j_1, m_1 - 1) \langle j_1, j_2, m_1 - 1, m_2 | J, M - 1 \rangle + a(j_2, m_2 - 1) \langle j_1, j_2, m_1, m_2 - 1 | J, M - 1 \rangle$$

$$a(j_1, m_1) \langle j_1, j_2, m_1 + 1, m_2 | J, M \rangle + a(j_2, m_2) \langle j_1, j_2, m_1, m_2 + 1 | J, M \rangle$$

und damit die Behauptungen. Berechnet man damit die obigen CGK, so erhält man tatsächlich die selben Ergebnisse. Zum Beispiel ist:

$$\underbrace{a(2, 1) \langle 1, 1, 1, 0 | 2, 1 \rangle}_{=2} = \underbrace{a(1, 1) \langle 1, 1, 2, 0 | 2, 2 \rangle}_{=0} + \underbrace{a(1, 0) \langle 1, 1, 1, 1 | 2, 2 \rangle}_{=\sqrt{2}}$$

und damit wie auch oben:

$$\langle 1, 1, 1, 0 | 2, 1 \rangle = \frac{1}{2} \sqrt{2} = \frac{1 \sqrt{2}}{\sqrt{2}}$$

Der Rest ergibt sich analog.

9. Aufgabe: Reduzible Tensoren

(a) Die zu zeigende Behauptung lässt sich durch einfaches Ausrechnen zeigen.

(b) Wir definieren die gedrehte Matrix als T'_{ij}:

$$T_{ij} = v_i w_j \quad \implies \quad T'_{ij} = R_{ik} R_{jl} v_k w_l = (R \cdot T \cdot R^T)_{ij}$$
Nun wird die Kovarianz für jeden einzelnen Summanden gezeigt. Diese kennzeichnen
wird als
\[T_{ij} = \frac{1}{3} \text{Tr}(T) \delta_{ij} + \frac{1}{2} (T_{ij} - T_{ji}) + \frac{1}{2} (T_{ij} + T_{ji} - \frac{2}{3} \text{Tr}(T) \delta_{ij}) \]

Die Kovarianz ist bewiesen, wenn jeweils gilt \((T_{ij}^A)_X = (T_{ij,X})^A\). Dies lässt sich durch
die folgenden Rechnungen zeigen:

\[(T_{ij}^D)_R = R_{ik} R_{jl} T_{kl} = \frac{1}{3} \text{Tr}(R^T R T) R_{ik} R_{jk} \]

hier wird \(\text{Tr}(ABC) = \text{Tr}(BCA)\) verwendet:

\[= \frac{1}{3} \text{Tr}(R^T R T) \delta_{ij} = \frac{1}{3} \text{Tr}(T_R) \delta_{ij} = (T_{ij,R})^D \]

\[(T_{ij}^A)_R = \frac{1}{2} R_{ik} R_{jl} (T_{kl} - T_{lk}) = \frac{1}{2} (T_{ij,R} - T_{ji,R}) = (T_{ij,R})^A \]

\[(T_{ij}^S)_R = \frac{1}{2} R_{ik} R_{jl} (T_{kl} + T_{lk} - \frac{2}{3} \text{Tr}(R^T R T) \delta_{lk}) = \frac{1}{2} (T_{ij,R} + T_{ij,R} - \frac{2}{3} \text{Tr}(T_R) \delta_{ij}) = (T_{ij,R})^S \]

10. Aufgabe: Spin-Singulett- und Triplett-Zustände

Im allgemeinen wirkt der Operator \(R\) erst einmal auf einem Spin-Raum. Wir definieren
seine Wirkung über seine vier Matrixelemente mit

\[R |+\rangle = a_+ |+\rangle + b_+ |--\rangle \quad R |--\rangle = a_- |+\rangle + b_- |--\rangle \]

Die Vektoren der Form \(|\varepsilon_1, \varepsilon_2\rangle\) sind aus dem Produktraum zwei solcher Räume. Deshalb
ist das Ergebnis nach \(R\) auch wieder auf solch einem Produktraum definiert. Es entspricht
einfach dem Produkt der einzelnen Zustände in den getrennten Räumen. Wir erkennen

\[R |+, +\rangle = a_+ |+, +\rangle + a_+ b_+ |+, -\rangle + b_+ a_+ |-, +\rangle + b_+ b_+ |-, -\rangle \]
\[R |+, -\rangle = a_+ a_- |+, +\rangle + a_+ b_- |+, -\rangle + b_+ a_- |-, +\rangle + b_+ b_- |-, -\rangle \]
\[R |-, +\rangle = a_- a_+ |+, +\rangle + a_- b_+ |+, -\rangle + b_- a_+ |-, +\rangle + b_- b_+ |-, -\rangle \]
\[R |-, -\rangle = a_- a_- |+, +\rangle + a_- b_- |+, -\rangle + b_- a_- |-, +\rangle + b_- b_- |-, -\rangle \]
durch einfaches "Ausmultiplizieren". Damit muss aber sein:

\[R(|+, -\rangle - |-, +\rangle) = (a_+ b_- - a_- b_+) |+, -\rangle + (a_- b_+ - a_+ b_-) |-, +\rangle \]

Damit bleibt ein Singulett-Zustand auch nach Drehung noch einer. Außerdem ist

\[R(|+, -\rangle + |-, +\rangle) = 2a_+ a_- |+, +\rangle + (a_- b_+ + a_+ b_-) (|+, -\rangle + |-, +\rangle) + 2b_+ b_- |-, -\rangle \]

auch wieder ein Linearkombination von Triplett-Zuständen genauso wie

\[R |+, j, m\rangle = a_+^2 |+, j, m\rangle + b_+^2 |-, j, m\rangle + a_- b_+ (|+, j\rangle + |-, j\rangle) \]

und

\[R |-, j, m\rangle = a_-^2 |+, j, m\rangle + b_-^2 |-, j, m\rangle + a_+ b_- (|+, j\rangle + |-, j\rangle) \]

11. Aufgabe: Vektoroperatoren

Wigner-Eckart-Theorem Tensoroperator k-ter Stufe: \(T^{(k)}_q, q \in [-k, k] \) erfüllt folgende Relationen:

\[[J_\pm, T^{(k)}_q] = \hbar \sqrt{k(k+1) - q(q \pm 1)} T^{(k)}_{q \pm 1} \]

\[[J_z, T^{(k)}_q] = \hbar q T^{(k)}_q \]

\[\langle \alpha, j, m | T^{(k)}_q | \alpha', j', m' \rangle = \langle j', k; m', q | j, m \rangle \langle \alpha, j | T^{(k)} | \alpha', j \rangle \frac{\sqrt{2j + 1}}{\sqrt{2j' + 1}} \]

Wobei der Bruch nicht von \(m, m', q \) abhängt und der CGK vor dem Bruch durch Addition von \(j' \) und \(k \) zu \(j \) entsteht. Außerdem ist \(m' + q = m \).

Es gelten folgende Auswahlregeln:

\[|j' - k| \leq j \leq j' + k \quad m' + q = m \]

(a) Der Kommutator des Vektoroperators \(\vec{A} \) ist gegeben durch

\[[L_i, A_j] = i \hbar \varepsilon_{ijk} A_k \]

Dieser ist ein Tensoroperator vom Rank 1, also

\[A^{(1)}_q \quad q = -1, 0, 1 \]
mit den ebenfalls gegebenen Komponenten

\[
A_{-1}^{(1)} = \frac{1}{\sqrt{2}} (A_x - i A_y)
\]

\[
A_0^{(1)} = A_z
\]

\[
A_{1}^{(1)} = \frac{1}{\sqrt{2}} (A_x + i A_y)
\]

Es ist zu zeigen, dass \(A_q^{(1)}\) die beiden oben genannten Relationen erfüllt. Hierzu setzt man jeweils eine Komponente ein und rechnet den Kommutator aus:

\[
[L_{\pm}, A_{-1}^{(1)}] = \frac{1}{\sqrt{2}} [L_x \pm i L_y, A_x - i A_y] = \frac{1}{\sqrt{2}} (\mp i [L_x, A_y] + (\pm i) [L_y, A_x])
\]

\[
= \hbar \sqrt{2} (1 \pm 1) A_z = \hbar \sqrt{2} A_{0}^{(1)} \quad \text{für } L_{+}
\]

Für \(L_{-}\) ergibt sich hier Null. Alle anderen Komponenten können analog geprüft werden. Nun kann das Wigner-Eckart-Theorem angewendet werden:

\[
\langle l, m | A_q^{(1)} | l', m' \rangle = \langle l' - 1; m', q | l, m \rangle \frac{\alpha_{l,l-1}}{\sqrt{2l + 1}}
\]

mit den Auswahlregeln: \(|l' - 1| \leq l \leq l' + 1 \quad \Delta l = \pm 1, 0 \quad \Delta m = q\) Nun werden die Matrixelemente für alle Kombinationen aus \(q = -1, 0, 1\) und \(\Delta l = \pm 1, 0\) mithilfe der Clebsch-Gordan-Koeffizienten berechnet.

- \(q = -1\)

\[
\langle l, m | A_{-1}^{(1)} | l - 1, m + 1 \rangle = \langle l - 1, 1; m + 1, -1 | l, m \rangle \frac{a_{l,l-1}}{\sqrt{2l + 1}}
\]

\[
= \sqrt{\frac{(l - 1 - m)(l - m)}{(2l - 1)2l}} \frac{a_{l,l-1}}{\sqrt{2l + 1}}
\]

\[
\langle l, m | A_{-1}^{(1)} | l, m + 1 \rangle = \sqrt{\frac{(l - m)(l + m + 1)}{2l(l + 1)}} \frac{a_{l,l}}{\sqrt{2l + 1}}
\]

usw.

- \(q = 0\)

\[
\langle l, m | A_0^{(1)} | l, m \rangle = \langle l, 1, m, 0 | l, m \rangle \frac{a_{l,l}}{\sqrt{2l + 1}}
\]

usw.
(b) Nun sei \(\vec{A} = \vec{L} \). Somit gilt für den Kommutator

\[
[L_i, L_j] = i\hbar\varepsilon_{ijk} L_k
\]

was schon bekannt ist. Die Komponenten lassen sich umschreiben zu

\[
L_{-1}^{(1)} = \frac{1}{\sqrt{2}}(L_x - iL_y) = \frac{L_-}{\sqrt{2}}
\]

\[
L_1^{(1)} = \frac{-L_+}{\sqrt{2}}
\]

\[
L_0^{(1)} = L_z
\]

Mit diesen Komponenten werden dann wieder die Matrixelemente berechnet.

• \(q = 0 \)

Es gilt \(\langle l, m|L_z|l, m \rangle = m\hbar \), was unmittelbar zu

\[
\langle l, m|L_0^{(1)}|l, m \rangle = m\hbar
\]

führt. Hieraus lässt sich sofort das reduzierte Matrixelement \(a_{l,l} \) bestimmen:

\[
\Rightarrow a_{l,l} = \hbar \sqrt{l(l+1)(2l+1)}
\]

Analog kann \(a_{l,l+1} \) und \(a_{l,l-1} \) bestimmt werden.

• \(q = -1 \)

Da die reduzierten Matrixelemente für andere \(q \) gleich sind, können diese hier gleich eingesetzt werden und mit den erwarteten Ergebnissen verglichen werden.

\[
\langle l, m|L_{-1}^{(1)}|l, m + 1 \rangle = \frac{\hbar}{\sqrt{2}} \sqrt{(l-m)(l+m+1)}
\]

vgl.

\[
\langle l, m|\frac{L_-}{\sqrt{2}}|l, m + 1 \rangle = \frac{\hbar}{\sqrt{2}} \sqrt{l(l+1) - m(m+1)}
\]
• $q = 1$

\[
\langle l, m | L_1^{(1)} | l, m - 1 \rangle = -\frac{\hbar}{\sqrt{2}} \sqrt{l(l - 1) - m(m - 1)} = \langle l, m | -\frac{L_+}{\sqrt{2}} | l, m - 1 \rangle
\]

4. Übung
Aufgabe 1: Elektrisches Quadrupolmoment

Elektrische Quadrupolübergänge sind bestimmt durch die Matrixelemente des Quadrupoloperators

\[Q_{jk} = e \left(x_j x_k - \delta_{jk} \frac{1}{3} r^2 \right), \quad j, k = 1, 2, 3. \]

(a) Drücken Sie die Komponenten \(Q_{jk} \) durch einen irreduziblen Tensoroperator zweiter Stufe \(Q^{(2)}_{\mu} \), mit \(\mu = -2, \ldots, 2 \), aus.

Hinweis: Benutzen Sie dabei die Kugelflächenfunktionen \(Y_{lm} \), die irreduziblen Tensoren \(l \)-ter Stufe sind.

(b) Berechnen Sie die Quadrupol-Matrixelemente \(\langle k'l'm'|Q_{jk}|k'lm'\rangle \) mit Hilfe des Wigner-Eckart-Theorems.

(c) Bestimmen Sie die Auswahlregeln für Quadrupolübergänge.

(*) Aufgabe 2 (2P): \(\pi \)-Nukleon-Streuung

\(\pi \)-Mesonen und \(\Delta \)-Baryonen sind, wie das Proton (p) und Neutron (n), aus Quarks zusammengesetzt. Wichtige Quantenzahlen für deren Charakterisierung sind der Isospin \(\vec{I} \) und die z-Komponente des Isospins \(I_z \). Die starke Wechselwirkung ist invariant unter Isospin-Transformationen, d.h., \(\vec{I}^2 \) und \(I_z \) sind Erhaltungsgrößen. Die Zustände werden analog zur räumlichen Rotationssymmetrie durch Ket-Zustände \(|I, I_z\rangle \) charakterisiert. Die Isospinoperatoren genügen den Drehimpulsvertauschungsgleichungen

\[[I_i, I_j] = i\varepsilon_{ijk}I_k. \]

Der Wirkungsquerschnitt für die \(\pi \)-Nukleon-Streuung \(\sigma(\pi N \rightarrow \pi'N') \), mit \(\pi, \pi' \in \{\pi^+, \pi^0, \pi^-\} \) und \(N, N' \in \{p, n\} \) ist gemäß

\[\sigma \sim |\langle \pi'N'|T|\pi N\rangle|^2 \]

durch das Matrixelement des skalaren Operators \(T \) bestimmt, der invariant unter Isospin-Transformationen ist. \(\pi^+, \pi^0 \) und \(\pi^- \) sind Isospin-Zustände zu \(I = 1 \) mit \(I_z = 1, 0, -1 \); \(p, n \) solche zu \(I = 1/2 \) und \(I_z = 1/2, -1/2 \). Falls die Schwerpunktsenergie im Bereich der \(\Delta \)-Resonanz liegt, d.h. bei ca. 1236 MeV, kann das Matrixelement für die Reaktion \(\pi N \rightarrow \pi'N' \) folgendermaßen faktorisiert werden:

\[\langle \pi'N'|T|\pi N\rangle \sim \langle \pi'N'|T|\Delta\rangle\langle\Delta|T|\pi N\rangle. \]

Der Isospin der \(\Delta \)-Resonanz ist \(I = 3/2 \). Berechnen Sie die Verhältnisse der Wirkungsquerschnitte

\[\sigma(\pi^+ p \rightarrow \pi^+ p) : \sigma(\pi^- p \rightarrow \pi^- p) : \sigma(\pi^- p \rightarrow \pi^0 n). \]

Hinweis: Wenden Sie das Wigner-Eckart-Theorem an.

(*) Aufgabe 3 (5P): Landé-Faktoren

Betrachten Sie den Einfluss eines Magnetfeldes \(\vec{B} \) auf die Energieniveaus eines Wasserstoffatoms. Der Hamilton-Operator, der die Wechselwirkung beschreibt, ist gegeben durch

\[H_Z = -\vec{\mu} \cdot \vec{B}, \]
wobei der Operator des magnetischen Moments des Elektrons \(\vec{\mu} \) lautet
\[
\vec{\mu} = -\mu_B (g_L \vec{L} + g_S \vec{S})/\hbar,
\]
mit \(g_L = 1 \) und \(g_S = 2 \). \(\mu_B \) ist das Bohr-Magneton.

(a) Betrachten Sie den Fall, dass der Effekt des Magnetfeldes klein gegenüber der Feinstruktur ist. Zeigen Sie, dass das magnetische Moment in einem \(nL_J \) Zustand folgende Gestalt
\[
\vec{\mu} = -g_J \mu_B \vec{J}/\hbar,
\]
mit
\[
g_J = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)},
\]
hat, wobei \(\vec{J} = \vec{L} + \vec{S} \). \(g_J \) ist als Landé -Faktor bekannt. Dabei soll die Hyperfeinstruktur vernachlässigt werden.

(b) Berechnen Sie näherungsweise das Magnetfeld \(\vec{B} \), für welches die von \(H_Z \) induzierten Effekten und die Feinstruktur-Aufspaltung zwischen den \(2p_{1/2} \)- und \(2p_{3/2} \)-Zuständen vergleichbare Größenordnung haben.

(c) Betrachten Sie nun auch den Effekt des Kernspins (\(I = 1/2 \)). Der Gesamtdrehimpuls des Atoms ist \(\vec{F} = \vec{J} + \vec{I} \).

1. Welche Werte haben die Quantenzahlen \(J \) und \(F \) für ein Wasserstoffatom auf dem \(2p \)-Niveau?

2. Es sei \(\{|F,M_F\} \equiv |n,F,M_F; l, s, J, I\rangle \) die Basis, die sich durch Addition von \(J \) und \(I \) zu \(F \) ergibt (\(M_F \) ist der Eigenwert von \(F_Z \)). Zeigen Sie, dass in jedem Unterraum
\(\mathcal{H}(n = 2, F, l = 1, s = 1/2, J, I = 1/2) \) des \(2p \)-Niveaus der Operator des magnetischen Moments des Elektrons \(\vec{\mu} \) folgendermaßen geschrieben werden kann
\[
\vec{\mu} = -g_{JF} \mu_B \vec{F}/\hbar.
\]

Berechnen Sie die verschiedenen möglichen Werte des Landé -Faktors \(g_{JF} \) des \(2p \)-Niveaus.

(**) Aufgabe 4 (3P): Spin-3/2-Teilchen

Ein Spin-3/2-Teilchen sei in einem Zentralpotential \(V(r) \) gebunden. Unter Berücksichtigung der Spin-Bahn-Kopplung lautet der Hamilton-Operator
\[
H = \frac{\vec{p}^2}{2m} + V(r) + \xi(r)\vec{L} \cdot \vec{S}.
\]

(a) Betrachten Sie den \(\vec{L} \cdot \vec{S} \) -Term nach Störungsrechnung erster Ordnung. In wieviele Niveaus spalten die Zustände zu \(l = 0, 1, 2 \) auf?

(b) Berechnen Sie die relative Aufspaltung innerhalb der Multipletts zu festen \(l \) und skizzieren die Energieniveaus.

Bitte beachten Sie die Verlängerung des Abgabetermins bis Freitag 11:30 Uhr.
12. Aufgabe: Elektrisches Quadrupolmoment

Gegeben ist:

\[Q_{jk} = e \left(x_j x_k - \delta_{ik} \frac{1}{3} r^2 \right) \quad k, j = 1, 2, 3 \]

woraus gleich folgt

\[Q_{jk} = Q_{kj} \quad \sum_k Q_{kk} = 0 \]

Die Matrix ist also symmetrisch und spurlos. Es gibt somit fünf unabhängige Komponenten.

(a) Der Tensoroperator zweiter Stufe \(Q^{(2)}_\mu \) lässt sich durch eine Linearkombination der Kugelflächenfunktionen \(Y_{lm} \) darstellen. Dabei ist \(l = 2 \) zu setzen, während \(m \) die Werte \(\pm 2, \pm 1, 0 \) annehmen kann.

Für diese gilt, umgeformt in kartesische Koordinaten:

\[Y_{2,0} = \sqrt{\frac{5}{16\pi}} (3\cos^2 \theta - 1) = \sqrt{\frac{5}{16\pi}} \frac{3z^2 - r^2}{r^2} \]

\[Y_{2,\pm1} = \pm \sqrt{\frac{15}{8\pi}} \sin \theta \cos \theta e^{\pm i\varphi} = \pm \sqrt{\frac{15}{8\pi}} \frac{z(x \pm iy)}{r^2} \]

\[Y_{2,\pm2} = \sqrt{\frac{15}{32\pi}} \sin^2 \theta e^{\pm 2i\varphi} = \sqrt{\frac{15}{32\pi}} \frac{x^2 \pm 2ixy - y^2}{r^2} \]

Nun werden für jede unabhängige Komponente der Matrix die Ortskoordinaten durch Ausdrücke der Kugelflächenfunktionen ersetzt. Es folgt:

\[Q_{33} = e(z^2 - \frac{1}{3} r^2) = e \frac{1}{3} \sqrt{\frac{16\pi}{5}} r^2 Y_{2,0} \]

\[Q_{31} = Q_{13} = exz = -er^2 \sqrt{\frac{8\pi}{15}} \Re(Y_{2,1}) \]

\[Q_{32} = Q_{23} = eyz = -er^2 \sqrt{\frac{8\pi}{15}} \Im(Y_{2,1}) \]

\[Q_{12} = Q_{21} = exy = \frac{1}{2} er^2 \sqrt{\frac{32\pi}{15}} \Im(Y_{2,2}) \]

\[Q_{11} + Q_{22} = -Q_{33} \]

\[Q_{11} - Q_{22} = e(x^2 - y^2) = er^2 \sqrt{\frac{32\pi}{15}} \Re(Y_{2,2}) \]

wobei die Real- und Imaginäreteile der Kugelflächenfunktionen umgeschrieben werden können zu

\[\Re(Y_{2,2}) = \frac{1}{2} (Y_{2,2} + Y_{2,-2}) \quad \Im(Y_{2,2}) = \frac{1}{2} (Y_{2,2} - Y_{2,-2}) \]
\[\Re(Y_{2,1}) = \frac{1}{2}(Y_{2,1} - Y_{2,-1}) \quad \Im(Y_{2,1}) = \frac{1}{2}(Y_{2,1} + Y_{2,-1}) \]

Es kann jetzt jedes Matrixelement geschrieben werden als

\[Q_{jk} = \sum_{p=-2} Y_{2p} c_{jk}^p \]

wobei die Konstanten \(c_{jk}^p \) durch Vergleich mit den obigen Berechnungen einfach zu ermitteln sind (\(p \) ist hier kein Exponent, sondern nur ein weiterer Index).

(b) Es ist

\[\langle k, l, m | Q_{jk} | k', l', m' \rangle = \langle k, l, m | 2 \sum_{p=-2} Y_{2p} c_{jk}^p | k', l', m' \rangle \]

mit dem Wigner-Eckart-Theorem

\[= \sum_{p=-2} c_{jk}^p \langle l', 2; m' | l, m \rangle \frac{\langle k, l | Y_2 | k', l' \rangle}{\sqrt{2l + 1}} \]

welches nicht weiter ausgerechnet werden kann.

(c) Es gelten die allgemeinen Auswahlregeln: CGK \(\neq 0 \), \(m' + p = m \), \(|l' - 2| \leq l \leq l' + 2 \)

13. Aufgabe: \(\pi \)-Nukleon-Streuung

Berechnet man die CGK (wie in der Vorlesung gemacht) so kommt man auf die Ergebnisse (in der Form \(|i_1, m_1; i_2, m_2 \rangle \) und \(|I, M \rangle \) wobei \(I \) der Gesamtisospin ist):

\[|\pi^+ p\rangle = |1, 1; 1/2, 1/2\rangle = |3/2, 3/2\rangle \]
\[|\pi^- p\rangle = |1, -1; 1/2, 1/2\rangle = \sqrt{\frac{1}{3}} |3/2, -1/2\rangle - \sqrt{\frac{2}{3}} |1/2, -1/2\rangle \]
\[|\pi^0 n\rangle = |1, 0; 1/2, -1/2\rangle = \sqrt{\frac{2}{3}} |3/2, -1/2\rangle + \sqrt{\frac{1}{3}} |1/2, -1/2\rangle \]

wenn man die beiden Isospins der beiden Teilchen (das \(\pi \) und das \(\Delta \)) wie zwei normale Drehimpulse addiert. Da die Massen zur Resonanz passen, gilt bei allen drei Reaktionen die angegebene Relation. Benutzt man das WE-Theorem (für einen Tensor \(T \)-ter Stufe, also \(r = q = 0 \)) so erhält man Terme der Form:

\[\langle j, m | T | j', m' \rangle = \langle j', m'; r, 0 | j, m \rangle \frac{\langle j | T | j' \rangle}{\sqrt{2j + 1}} \]

Da \(r = q = 0 \) ergibt der CGK nur dann einen Wert, wenn \(j = j' \) und \(m = m' \) gilt. Da
die Δ-Resonanz einen Isospin von $I = 3/2$ hat, fallen alle Terme mit $I = 1/2$ weg. Alle anderen CGK sind nach Definition 1. Man erhält also:

\[
\langle \pi^+ p | T | \pi^+ p \rangle = \frac{\langle 3/2, 3/2 | T | 3/2, 3/2 \rangle}{2} = \frac{\langle 3/2 | T | \Delta \rangle \langle \Delta | T | 3/2 \rangle}{2}
\]

Da das letzte Ergebnis noch öfter auftritt, setzte wir als Abkürzung:

\[
M_\Delta = \frac{\langle 3/2 | T | \Delta \rangle \langle \Delta | T | 3/2 \rangle}{2}
\]

Für die nächste Reaktion ist dann:

\[
\langle \pi^- p | T | \pi^- p \rangle = \langle \pi^- p | T | \Delta \rangle \langle \Delta | T | \pi^- p \rangle
\]

Benutzt man jetzt das WE-Theorem, dann fallen die Teile proportional zu $|1/2, -1/2\rangle$, da der CGK Null ist. Man erhält also:

\[
\langle \pi^- p | T | \Delta \rangle \langle \Delta | T | \pi^- p \rangle = \frac{\sqrt{1} \langle 3/2 | T | \Delta \rangle \langle \Delta | T | 3/2 \rangle}{2} = \frac{1}{3} M_\Delta
\]

und schließlich analog:

\[
\langle \pi^- p | T | \pi^0 n \rangle = \frac{\sqrt{2}}{3} M_\Delta
\]

Insbesamt hat man damit die Verhältnisse der Streuquerschnitte (also die Quadrate der berechneten Ergebnisse) mit

\[
\sigma(\pi^+ p \rightarrow \pi^+ p) : \sigma(\pi^- p \rightarrow \pi^- p) : \sigma(\pi^- p \rightarrow \pi^0 n) = 9 : 1 : 2
\]

14. Aufgabe: Landé-Faktoren

(a) Da der Effekt des Magnetfeldes klein gegenüber der Feinstruktur sein soll, benutzen wir immer noch den Gesamtdrehimpuls

\[
\vec{J} = \vec{L} + \vec{S}
\]

Sowohl \vec{L} also auch \vec{S} sind Vektoroperatoren (folgt direkt aus ihrer Definition als Drehimpuls und weil \vec{S} mit \vec{L} vertauscht). Nach dem Projektionstheorem ist dann zum Beispiel

\[
\vec{L} = \frac{\langle \vec{J} \cdot \vec{L} \rangle}{\langle \vec{J}^2 \rangle} \vec{J}
\]
Weiter ist
\[\vec{J} \cdot \vec{L} = \vec{L}^2 + \vec{S} \cdot \vec{S} = \vec{L}^2 + \frac{1}{2} \left(\vec{J}^2 - \vec{E}^2 - \vec{S}^2 \right) \]
und damit
\[\vec{L} = \frac{l(l+1) + 1/2 (j(j+1) - l(l+1) - s(s+1))}{j(j+1)} \vec{J} \]
und analog auch
\[\vec{S} = \frac{s(s+1) + 1/2 (j(j+1) - l(l+1) - s(s+1))}{j(j+1)} \vec{J} \]
Schließlich müssen wir nur noch zusammensetzen:
\[\vec{\mu} = -\frac{\mu_B}{\hbar} \left(\vec{L} + 2\vec{S} \right) = -\frac{\mu_B}{2\hbar j(j+1)} (2l(l+1) + j(j+1) - l(l+1) - s(s+1) + 4s(s+1) + 2j(j+1) - 2l(l+1) - 2s(s+1)) \]
Zusammenfasst ergibt sich die Behauptung:
\[\vec{\mu} = -\frac{\mu_B}{2\hbar j(j+1)} (3j(j+1) - l(l+1) + s(s+1)) \]
(b) Die gesamte Korrektur der Feinstruktur erster Ordnung ist gegeben durch
\[E^{(1)}_{FS} = -E_n \frac{\alpha^2}{n^2} \left(\frac{3}{4} - \frac{n}{j+1/2} \right) \]
Für unseren Fall ist das
\[j = \frac{1}{2} \implies E^{(1)}_{FS} = \frac{5}{16} E_n \alpha^2 \quad j = \frac{3}{2} \implies E^{(1)}_{FS} = \frac{1}{16} E_n \alpha^2 \]
Der Unterschied ist also gegeben durch:
\[\Delta E_1 = \frac{1}{4} E_n \alpha^2 = -\frac{E_I}{16} \alpha^2 \]
wobei \(E_I = 13.6 \text{eV} \) ist.
Wir legen die \(z \)-Achse in Magnetfeldrichtung mit Stärke \(B_0 \). Dann ist
\[H_z = -g_j \mu_B J_z B_0 / \hbar \implies \langle H_z \rangle = -g_j \mu_B m_j B_0 \]
Das bedeutet die Aufspaltung nach \(m_j \) ist homogen in der Energie mit jeweils Diffe-
renztermen von
\[\Delta E_2 = -g_j \mu_B B_0 = \frac{g_j e \hbar}{2m} B_0 \]
Damit die beiden Aufspaltungen jetzt gleich sind, muss für das Magnetfeld also gelten:
\[B_0 = -\frac{m}{8e\hbar} E/I_\alpha^2 \frac{1}{g_j} \]
g_j hat je nach \(j \) den Wert
\[g_{1/2} = \frac{2}{3}, \quad g_{3/2} = \frac{4}{3} \]
Man erhält dann die Magnetfelder
\[j = \frac{1}{2} \implies B_0 \approx 1.174 \, \text{T} \quad j = \frac{3}{2} \implies B_0 \approx 0.5868 \, \text{T} \]
Das sind ziemlich starke Felder.

(c) Ein Elektron auf dem 2p Niveau kann nach Drehimpulsaddition die zwei Werte
\[j = l + 1/2 = 3/2 \quad j = l - 1/2 = 1/2 \]
annehmen. Damit ergibt sich (ebenfalls nach Drehimpulsaddition) für \(f \):
\[j = 1/2 : f = 1, 0 \quad j = 3/2 : f = 1, 2 \]
Im genannten Raum können wir wieder den Projektionssatz anwenden. Diesmal ist \(\vec{J} \) offensichtlich ein Vektoroperator zum Gesamtdrehimpuls \(\vec{F} \). Es ist dann
\[\vec{J} = \frac{\langle \vec{J} \cdot \vec{F} \rangle}{\langle \vec{F}^2 \rangle} \vec{F} = \frac{\vec{F}}{2f(f+1)} (2j(j+1) + f(f+1) - j(j+1) - i(i+1)) = g_f \vec{F} \]
analog wie oben. Man erhält dann aus dem Ergebnis von oben:
\[\vec{\mu} = -g_j \mu_B \vec{J}/\hbar = -g_j g_f \mu_B \vec{F}/\hbar \]
Wir definieren also
\[g_{jF} = g_j g_f = \frac{g_j}{2f(f+1)} (j(j+1) + f(f+1) - i(i+1)) \]
und erhalten somit die Behauptung. Dieser Weg ist aber nur möglich für \(f \neq 0 \) (weil nur da der Bruch definiert ist). Für \(f = 0 \) ist jedoch auch \(m_f = 0 \) und der Term
spaltet im Magnetfeld nach \(m_f \) gar nicht auf. Wir setzen deshalb einfach

\[
g_{j=0,j=1/2} = 0
\]

Für die restlichen Werte ergibt sich:

\[
\begin{align*}
 j = 1/2, f = 1 & \quad g_{jF} = 1/3 \\
 j = 3/2, f = 1 & \quad g_{jF} = 5/3 \\
 j = 3/2, f = 2 & \quad g_{jF} = 1
\end{align*}
\]

15. Aufgabe: Spin-3/2-Teilchen

Wie auch schon in der Vorlesung wechseln wir in die Basis mit dem Gesamtspin \(\vec{J} = \vec{S} + \vec{L} \):

\[
|l, m_l, s, m_s \rangle \mapsto |j, m_j, l, s \rangle
\]

welche durch die CGK gegeben sind und damit berechenbar. In dieser Basis ist dann

\[
\vec{L} \cdot \vec{S} = \frac{1}{2} \left(\vec{J}^2 - \vec{L}^2 - \vec{S}^2 \right)
\]

(a) Definiere \(H_{LS} = \xi(r) \vec{L} \cdot \vec{S} \). Wie in der Vorlesung gezeigt, vertauschen die Operatoren \(J^2, J_z, L^2 \) und \(S^2 \) mit dem Hamiltonoperator \(H \) und deshalb ist \(H_{LS} \) schon diagonal. Wir können die gestörte Energie also einfach berechnen über \(\langle H_{LS} \rangle \). Deshalb betrachten wir zuerst:

\[
\vec{L} \cdot \vec{S} |j, m_j, l, s \rangle = \frac{\hbar^2}{2} (j(j+1) - l(l+1) - s(s+1)) |j, m_j, l, s \rangle
\]

Diesmal gibt es vier Möglichkeiten für \(j \):

\[
\begin{align*}
 j &= \begin{cases}
 l + 3/2 \\
 l + 1/2 \\
 l - 1/2 \\
 l - 3/2
 \end{cases}
\end{align*}
\]

\(J \) muss jedoch immer größer als Null bleiben, also gilt diese Betrachtung nur für \(l > 3/2 \) (in diesem Fall also nur für \(l = 2 \)). Außerdem ist \(|l - s| \leq j \leq |l + s| \). Es ist im allgemeinen Fall für \(s = 3/2 \):
\[j(j + 1) - l(l + 1) - s(s + 1) |j, m_j, l, s\rangle = \begin{pmatrix} 3l & l + 3/2 \\ l - 3 & l + 1/2 \\ -l - 4 & l - 1/2 \\ -3l - 3 & l - 3/2 \end{pmatrix} |j, m, l, s\rangle \]

und deshalb:

\[\langle H_{LS} \rangle = \langle \xi(r) \rangle \frac{\hbar^2}{2} \begin{pmatrix} 3l & l + 3/2 \\ l - 3 & l + 1/2 \\ -l - 4 & l - 1/2 \\ -3l - 3 & l - 3/2 \end{pmatrix} \]

wobei zu beachten ist, dass nicht für alle Werte von \(l \) auch die vier Fälle angenommen werden. Für \(l = 0 \) gibt es für \(j \) z.B. nur den Wert 3/2, für \(l = 1 \) nur 1/2, 3/2 und 5/2. Deswegen spaltet der Zustand auf in:

<table>
<thead>
<tr>
<th>(l)-Werte</th>
<th>Anzahl an Aufspaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Insgesamt gibt es also 8 Aufspaltungen.
\[
\begin{array}{c|ccc}
 l & E_{(\rho(r))} & j \\
 \hline
 0 & 0 & \frac{3}{2} \quad l + \frac{3}{2} \\
 & & l + \frac{1}{2} \\
 & & l - \frac{1}{2} \\
 & & l - \frac{3}{2} \\
 1 & 3 & l + \frac{3}{2} \\
 & -2 & l + \frac{1}{2} \\
 & -5 & l - \frac{1}{2} \\
 & & l - \frac{3}{2} \\
 2 & 6 & l + \frac{3}{2} \\
 & -1 & l + \frac{1}{2} \\
 & -6 & l - \frac{1}{2} \\
 & -9 & l - \frac{3}{2} \\
\end{array}
\]

(b)

5. Übung
(*) Aufgabe 1 (6P): Wasserstoffatom im Magnetfeld

Betrachten Sie ein Elektron in einem \(p \)-Zustand, welches sich in einem Magnetfeld \(\vec{B} = B \hat{e}_z \) befindet, wobei der Hamilton-Operator die Gestalt

\[
H = H_0 + H_Z + H_{LS},
H_Z = \omega_0 (L_z + 2S_z),
H_{LS} = \lambda \vec{L} \cdot \vec{S},
\]

haben soll. Dabei ist \(H_0 \) der Hamilton-Operator des Wasserstoffatoms, \(H_Z \) beschreibt den Einfluss des Magnetfeldes und \(H_{LS} \) ist die Spin-Bahnkopplung. (Die Ortsabhängigkeit sowie die restlichen relativistischen Korrekturen sollen der Einfachheit halber vernachlässigt werden).

(a) Zeigen Sie, dass \(H \) aus dem Entartungsraum der \(p \)-Zustände von \(H_0 \) nicht herausführt, d. h. dass \([H, \vec{L}^2] = 0\).

(b) Betrachten Sie \(H_{LS} \) als Störung zu \(H_0 + H_Z \) und geben Sie für das ungestörte Problem die Energieigenwerte sowie deren Entartungen an.

(c) Berechnen Sie die Matrixelemente des Störoperators \(H_{LS} \) in der Basis \(\{ |l, s; m_L, m_s \rangle \} \). Dazu ist es günstig, die Operatoren \(L_{\pm} \) und \(S_{\pm} \) einzuführen.

(d) Betrachten Sie zunächst die nichtentarteten Zustände und bestimmen Sie im Rahmen der Störungstheorie erster Ordnung die neuen Energien und Eigenfunktionen.

(e) Untersuchen Sie jetzt störungstheoretisch den Einfluss des Spin-Bahnkopplung auf die entarteten Zustände. Berechnen Sie die Energien in erster Ordnung in \(\lambda \) und die neuen Eigenfunktionen in nullter Ordnung.

(*) Aufgabe 2 (4P): Positronium

Positronium ist ein Atom, das aus einem Elektron \(e^- \) und seinem Antiteilchen, dem Positron \(e^+ \) besteht. Betrachten Sie ein solches Atom im Grundzustand, welches sich in einem Magnetfeld \(\vec{B} \) parallel zur \(z \)-Achse befindet. Der Hamilton-Operator kann folgendermaßen geschrieben werden:

\[
H = H_0 + H_{HF} + H_Z,
H_{HF} = A \vec{S}_1 \cdot \vec{S}_2,
H_Z = -\vec{\mu}_1 \cdot \vec{B} - \vec{\mu}_2 \cdot \vec{B}.
\]

Dabei bezeichnet \(H_0 \) den Hamilton-Operator des Positroniums, der nur die elektrostatische Wechselwirkung zwischen Elektron und Positron enthält. \(\vec{S}_1 \) und \(\vec{S}_2 \) sind die Spinoperatoren von Elektron bzw. Positron und \(\vec{\mu}_1 \) und \(\vec{\mu}_2 \) deren magnetische Momente. \(\vec{S}_i \) und \(\vec{\mu}_i \) sind durch die gyromagnetischen Verhältnisse \(\gamma_1 \) und \(\gamma_2 \) miteinander verknüpft:

\[
\vec{\mu}_i = \gamma_i \vec{S}_i, \quad i = 1, 2.
\]

Für das Elektron und das Positron gilt \(\gamma_1 = -\gamma_2 \). \(H_{HF} \) beschreibt die magnetische Wechselwirkung zwischen \(\vec{S}_1 \) und \(\vec{S}_2 \) und \(H_Z \) die Kopplung von \(\vec{B} \) an die magnetischen Momente.
(a) Berechnen Sie die Matrixelemente des Störoperators $H_{HF} + H_Z$ in der Basis $\{|F, m_F\rangle\}$, wobei F und m_F die Quantenzahlen des Gesamtspins

$$\vec{F} = \vec{S}_1 + \vec{S}_2,$$

sind.
(b) Bestimmen Sie die Aufspaltung des 1S-Grundzustands in erster Ordnung Störungstheorie.
(c) Stellen Sie graphisch die Energieaufspaltung als Funktion des Magnetfelds B dar.

Aufgabe 3 : Eichinvarianz

Betrachten Sie den Hamilton-Operator eines geladenen Teilchens im Magnetfeld. Zeigen Sie, dass die Schrödinger-Gleichung invariant ist, falls folgende Transformationen gleichzeitig durchgeführt werden

$$\vec{A} \rightarrow \vec{A}' = \vec{A} + \vec{\nabla} \Lambda,$$
$$\Phi \rightarrow \Phi' = \Phi - \frac{\partial}{\partial t} \Lambda,$$
$$\Psi \rightarrow \Psi' = \Psi e^{iQ \frac{\hbar}{2} \Lambda},$$

wobei \vec{A} das Vektorpotential und Φ das skalare Potential ist. \vec{A}, Φ und Λ sind Funktionen von \vec{r} und t. Q bezeichnet die elektrische Ladung des Teilchens.
16. Aufgabe: Wasserstoffatom im Magnetfeld

Wir benutzen die in der Aufgabe gemachten Bezeichnungen für die einzelnen Operatoren.

(a) Es ist nach Vorlesung (aufgrund des Zentralpotentials)

\[[H_0, \vec{L}^2] = 0 \]

Außerdem vertauscht \(\vec{L}^2 \) mit \(L_z \) (da es ein Drehimpuls ist) und mit \(S_z \) (da der Spin in einem anderen Raum wirkt), also

\[[H_z, \vec{L}^2] = 0 \]

Setzen wir \(\vec{J} = \vec{L} + \vec{S} \) so folgt

\[\vec{L} \cdot \vec{S} = \frac{1}{2} \left(\vec{J}^2 - \vec{L}^2 - \vec{S}^2 \right) \]

Da jetzt \(\vec{L}^2 \) mit dem Gesamtdrehimpuls nach Definition vertauscht, ist auch

\[[H_{LS}, \vec{L}^2] = 0 \]

(b) Wir wählen einen beliebigen Zustand

\[|\phi\rangle = |n, l = p = 1, m_l, s = 1/2, m_s\rangle \]

und erhalten

\[(H_0 + H_z) |\phi\rangle = \left(\frac{E_I}{n^2} + \omega_0 \hbar (m_l + 2m_s) \right) |\phi\rangle \]

Wir setzen \(E_0 = \frac{E_I}{n^2} \) als fest voraus (da sich \(n \) nicht ändert). Deshalb nehmen wir diesen Wert \(E_0 \) als Energieverschiebung an und setzen den Nullpunkt so, dass nur der \(H_Z \)-Term eine Energie ungleich Null hervorruft. \(m_l \) kann die Werte von -1 bis 1 annehmen, \(m_s \) nur -1/2 und 1/2. Für den Term \(m_l + 2m_s \) erhält man also durch einfaches Rechnen die Werte -2 bis 2 (ganzzahlig), wobei nur die 0 zweimal entartet.
ist. Genauer sind die Energien gegeben durch

\[
\begin{array}{ccc}
m_l & m_s & E_n/(\omega_0\hbar) \\
1 & + & 2 \\
1 & - & 0 \\
0 & + & 1 \\
0 & - & -1 \\
-1 & + & 0 \\
-1 & - & -2 \\
\end{array}
\]

(c) Wir setzen für einen Drehimpuls \(J \) (entweder \(S \) oder \(L \))

\[
J_\pm = J_x \pm iJ_y \implies J_x = \frac{J_+ + J_-}{2}, \ J_y = \frac{J_+ - J_-}{2i}
\]

Daraus folgt

\[
L_x S_x = \frac{1}{4} (L_+ S_+ + L_- S_+ + L_+ S_- + L_- S_-)
\]

und

\[
L_y S_y = -\frac{1}{4} (L_+ S_+ - L_- S_+ - L_+ S_- + L_- S_-)
\]

Damit ist insgesamt

\[
\vec{L} \cdot \vec{S} = L_x S_x + L_y S_y + L_z S_z = \frac{1}{2} (L_- S_+ + L_+ S_-) + L_z S_z
\]

Die genannte Basis \(| m_l, m_s \rangle\) hat die Basisvektoren

\[
|1, +\rangle, |1, -\rangle, |0, +\rangle, |0, -\rangle, |0, +\rangle, |1, -\rangle
\]

Weiterhin ist

\[
J_\pm |j, m_j\rangle = \hbar \sqrt{(j \mp m)(j + m + 1)} |j, m_j \pm 1\rangle
\]

Beim Berechnen muss noch beachtet werden, dass \(m_s \) und \(m_l \) in ihrem Bereich blei-
Man erhält die Ergebnisse:

\[
\vec{L} \cdot \vec{S} | -1, - \rangle = \frac{1}{2} \hbar^2 | -1, - \rangle \\
\vec{L} \cdot \vec{S} | -1, + \rangle = \hbar^2 \left(\frac{1}{\sqrt{2}} | 0, - \rangle - \frac{1}{2} | -1, + \rangle \right) \\
\vec{L} \cdot \vec{S} | 0, - \rangle = \hbar^2 \frac{1}{\sqrt{2}} | -1, + \rangle \\
\vec{L} \cdot \vec{S} | 0, + \rangle = \hbar^2 \frac{1}{\sqrt{2}} | 1, - \rangle \\
\vec{L} \cdot \vec{S} | 1, - \rangle = \hbar^2 \left(\frac{1}{\sqrt{2}} | 0, + \rangle - \frac{1}{2} | 1, - \rangle \right) \\
\vec{L} \cdot \vec{S} | 1, + \rangle = \frac{1}{2} \hbar^2 | 1, + \rangle
\]

Schreiben wir die Vektoren in genau der genannten Reihenfolge, dann erhalten wir die Matrix

\[
M = \vec{L} \cdot \vec{S} = \begin{pmatrix}
\frac{\hbar^2}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{\hbar^2}{2} & \frac{\hbar^2}{\sqrt{2}} & 0 & 0 & 0 \\
0 & \frac{\hbar^2}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{\hbar^2}{\sqrt{2}} & 0 & 0 \\
0 & 0 & \frac{\hbar^2}{\sqrt{2}} & -\frac{\hbar^2}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{\hbar^2}{2} & 0
\end{pmatrix}
\]

(d) Wir betrachten zuerst die nicht entarteten Zustände. Das sind alle Zustände außer \(|1, - \rangle\) und \(|-1, + \rangle\)

Die Störung in der Energie in 1. Ordnung ist gegeben durch

\[
E^{(1)} = \lambda \langle \phi | M | \phi \rangle
\]

wenn \(|\phi\rangle\) der betrachtete ungestörte Zustand ist. Die Störung an der Eigenfunktion ist gegeben durch

\[
|\phi\rangle^{(1)} = \lambda \sum \frac{\langle \psi | M | \phi \rangle}{E_\phi - E_\psi}
\]

wobei über alle anderen ungestörten Eigenzustände \(\psi\) des Problems summiert werden muss.
|1, +⟩ und |−1, −⟩: Für diese beiden Zustände ist die Matrix schon diagonal. Die Energiekorrektur ist dieser Diagonalwert, also

\[E^{(1)} = \frac{\lambda}{2} \hbar^2 \]

Alle anderen Matrixelemente in diesen Zuständen verschwinden (in der Matrix stehen in Spalte und Zeile sonst nur Nullen). Das bedeutet, dass die Zustände |1, +⟩ und |−1, −⟩ auch Eigenvektoren zur Matrix M und damit zum gesamten gestörten Problem sind. Die Korrektur der Eigenfunktionen ist Null und die Eigenfunktionen in jeder Ordnung lauten wie die ungestörten. Die gesamten Energiewerte (mit dem oben genannten Energienullpunkt der Coulombenergie) sind

\[E = \pm 2\omega_0 \hbar + \frac{\lambda}{2} \hbar^2 \]

|0, +⟩ und |0, −⟩: Für diese beiden Zustände ist das Diagonalelement Null. Das bedeutet die Energiekorrekturen sind auch Null

\[E^{(1)} = 0 \Rightarrow E = \pm \omega_0 \hbar \]

Der Störterm des Zustandes ergibt sich über die Matrixelemente. Für |0, −⟩ kommt also nur der Mischterm mit |−1, +⟩ in Frage. Also

\[|0, −⟩^{(1)} = \lambda \frac{\langle -1, + | M | 0, − ⟩}{- \omega_0 \hbar - 0} | -1, + ⟩ = - \lambda \frac{\hbar^2}{\sqrt{2} \omega_0 \hbar} | -1, + ⟩ \]

Für den ungestörten Zustand |0, +⟩ erhält man analog:

\[|0, +⟩^{(1)} = \lambda \frac{\langle 1, - | M | 0, + ⟩}{\omega_0 \hbar - 0} | 1, - ⟩ = \lambda \frac{\hbar^2}{\sqrt{2} \omega_0 \hbar} | 1, - ⟩ \]

(e) Wir betrachten jetzt die beiden ungestörten Zustände

|1, −⟩ und |−1, +⟩

welche im ungestörten Problem entartet sind (zum Energiewert 0). Der Operator welcher zur Matrix M führt eingeschränkt auf diese beiden Zustände ist gegeben durch

\[\hat{M} = \begin{pmatrix} - \frac{\hbar^2}{2} & 0 \\ 0 & - \frac{\hbar^2}{2} \end{pmatrix} = - \frac{\hbar^2}{2} I_2 \]

Diese Matrix ist recht einfach zu diagonalisieren (da sie es schon ist). Die Korrektur
der Energien ist also gegeben durch

\[E^{(1)} = -\lambda \frac{\hbar^2}{2} \]

wobei die Zustände in 0. ter Ordnung einfach die schon oben genannten Basiszustände

\[|1, -\rangle \quad \text{und} \quad |-1, +\rangle \]

sind. Die Gesamtennergie ist also

\[E = -\lambda \frac{\hbar^2}{2} \]

Zusammenfassung Wir haben nach der Rechnung insgesamt 6 Energiewerte erhalten, wobei einer (der letzte) zweifach entartet ist:

\[E = 2\omega_0\hbar + \lambda \frac{\hbar^2}{2}, \omega_0\hbar, -2\omega_0\hbar + \lambda \frac{\hbar^2}{2}, -\omega_0\hbar, -\lambda \frac{\hbar^2}{2}, -\lambda \frac{\hbar^2}{2} \]

Die dazugehörigen gestörten Eigenzustände in 1. Ordnung Störungstheorie (beziehungsweise in 0. für die entarteten) sind gegeben durch

\[2\omega_0\hbar + \lambda \frac{\hbar^2}{2} \quad |1, +\rangle \quad \text{entspricht} \quad P_{3/2}, m_j = 3/2 \]

\[\omega_0\hbar \quad |0, +\rangle + \frac{\lambda \hbar^2}{\sqrt{2}\omega_0\hbar} |1, -\rangle \quad \text{wird in mehr Ordnungen zu} \quad P_{3/2}, m_j = 1/2 \]

\[-2\omega_0\hbar + \lambda \frac{\hbar^2}{2} \quad |-1, -\rangle \quad \text{entspricht} \quad P_{3/2}, m_j = -3/2 \]

\[-\omega_0\hbar \quad |0, -\rangle - \frac{\lambda \hbar^2}{\sqrt{2}\omega_0\hbar} |-1, +\rangle \quad \text{wird in mehr Ordnungen zu} \quad P_{1/2}, m_j = -1/2 \]

\[-\lambda \frac{\hbar^2}{2} \quad |1, -\rangle \quad \text{wird in mehr Ordnungen zu} \quad P_{1/2}, m_j = 1/2 \]

\[-\lambda \frac{\hbar^2}{2} \quad |-1, +\rangle \quad \text{wird in mehr Ordnungen zu} \quad P_{3/2}, m_j = -1/2 \]

17. Aufgabe: Positronium

Wir setzen wie in der Aufgabe vorgestellt:

\[H = H_0 + H_{HF} + H_Z \]
mit
\[H_{\text{HF}} = A \vec{S}_1 \cdot \vec{S}_2 \quad H_Z = -\vec{\mu}_1 \cdot \vec{B} - \vec{\mu}_2 \cdot \vec{B} \]

Da das \(\vec{B} \)-Feld nur in z-Richtung wirkt und \(\gamma_1 = -\gamma_2 \) gilt, setzen wir an
\[H_Z = -\gamma_1 S_{1z} B_0 - \gamma_2 S_{2z} B_0 = \omega (S_{2z} - S_{1z}) \]
mit der Larmorfrequenz
\[\omega = \gamma_1 B_0 \]

(a) Setzen wir \(\vec{F} = \vec{S}_1 + \vec{S}_2 \), so erhalten wir in der \(|F, M_f\rangle \)-Basis vier Basisvektoren, welche leicht durch die alte Basis \(\{|\varepsilon_1, \varepsilon_2\rangle | \varepsilon_1, \varepsilon_2 \in \{+, -\} \} \) dargestellt werden kann (siehe altes Übungsblatt oder Vorlesung):
\[|0, 0\rangle = \frac{1}{\sqrt{2}} (|+, -\rangle - |-, +\rangle) \]
\[|1, 1\rangle = |+, +\rangle \]
\[|1, 0\rangle = \frac{1}{\sqrt{2}} (|+, -\rangle + |-, +\rangle) \]
\[|1, -1\rangle = |-, -\rangle \]

HF: Mit der Definition von \(\vec{F} \) können wir für \(H_{\text{HF}} \) schreiben:
\[H_{\text{HF}} = \frac{A}{2} \left(\vec{F}^2 - \vec{S}_1^2 - \vec{S}_2^2 \right) \]
und damit ist ein beliebiges Matrixelement gegeben durch
\[\langle F, M_f | H_{\text{HF}} | F', M'_f \rangle = \frac{A \hbar^2}{2} \left(F(F+1) - \frac{3}{2} \right) \delta_{M_f, M'_f} \]
aufgrund der Orthogonalitätseigenschaft. Da \(F \) nur die beiden Werte 0 und 1 annehmen kann, gibt es nur die beiden Werte \(\frac{A \hbar^2}{4} \) für \(F = 1 \) und \(-\frac{3A \hbar^2}{4} \) für \(F = 0 \) auf der Diagonalen.

Z: Um die Matrixelemente von \(H_Z \) zu berechnen, gehen wir zurück in die alte Basis wie oben beschrieben. Dort wissen wir nämlich, dass
\[S_{1z} |\varepsilon_1, \varepsilon_2\rangle = \frac{\hbar}{2} \varepsilon_1 |\varepsilon_1, \varepsilon_2\rangle \quad S_{2z} |\varepsilon_1, \varepsilon_2\rangle = \frac{\hbar}{2} \varepsilon_2 |\varepsilon_1, \varepsilon_2\rangle \]
gilt. Deshalb erhalten wir

\[H_Z |0, 0\rangle = \frac{\omega \hbar}{2\sqrt{2}} (- |+, -\rangle - |-, +\rangle - |+, +\rangle - |-, +\rangle) = -\omega \hbar |1, 0\rangle \]
\[H_Z |1, 1\rangle = \frac{\omega \hbar}{2} (|+, +\rangle - |+, +\rangle) = 0 \]
\[H_Z |1, 0\rangle = \frac{\omega \hbar}{2\sqrt{2}} (- |+, -\rangle + |-, +\rangle - |+, +\rangle + |-, +\rangle) = -\omega \hbar |0, 0\rangle \]
\[H_Z |1, -1\rangle = \frac{\omega \hbar}{2} (- |-, -\rangle + |-, +\rangle) = 0 \]

Das bedeutet nur die Matrixelemente zwischen \(|0, 0\rangle\) und \(|1, 0\rangle\) ergeben einen endlichen Wert.

Man erhält insgesamt für die Matrix (wie oben berechnet) wenn man die Basis in der Reihenfolge \(|1, 1\rangle, |1, -1\rangle, |1, 0\rangle, |0, 0\rangle\) wählt die Matrix:

\[M := H_{HF} + H_Z = \begin{pmatrix} A \frac{\hbar^2}{4} & 0 & 0 & 0 \\ 0 & A \frac{\hbar^2}{4} & 0 & 0 \\ 0 & 0 & -A \hbar & -\omega \hbar \\ 0 & 0 & -\omega \hbar & -3A \frac{\hbar^2}{4} \end{pmatrix} \]

(b) Um jetzt die Energieaufspaltungen zu berechnen, müssen wir die oben genannte Matrix \(M\) diagonalisieren. Weitere Aufspaltungen existieren nicht (da wir uns im 1S-Zustand befinden). Die Matrix \(M\) besteht aus zwei 1x1-Matrizen (die schon trivialerweise diagonalisiert sind) und einer 2x2-Matrix. Wir können also die zwei Energiewerte

\[E_1 = A \frac{\hbar^2}{4} \quad E_2 = A \frac{\hbar^2}{4} \]

welche gleich sind schon angeben. Die Untermatrix

\[N = \begin{pmatrix} A \frac{\hbar^2}{4} & -\omega \hbar \\ -\omega \hbar & -3A \frac{\hbar^2}{4} \end{pmatrix} \]

müssen wir noch diagonalisieren, was jedoch einfach ist. Das charakteristische Polynom \(X\) ist gegeben durch

\[\left(A \frac{\hbar^2}{4} - X \right) \left(-3A \frac{\hbar^2}{4} - X \right) - \omega^2 \hbar^2 = -3 \left(A \frac{\hbar^2}{4} \right)^2 - X \left(-2A \frac{\hbar^2}{4} \right) + X^2 - \omega^2 \hbar^2 = 0 \]
Das wird gelöst durch die beiden Energiewerte

\[X_{1/2} = E_{3/4} = -\frac{Ah^2}{4} \pm \sqrt{4 \left(\frac{Ah^2}{4} \right)^2 + \omega^2h^2} \]

Insgesamt haben wir also eine Aufspaltung in drei Energiewerte (da \(E_1 = E_2 \) ist).

(c) Für kein vorhandenes Magnetfeld (\(\omega = 0 \)) sind die Energiewerte \(E_1, E_2 \) und \(E_3 \) wie erwartet gleich. Für ein größer werdendes Magnetfeld verändern sich \(E_1 = E_2 \) nicht. Dafür gehen \(E_3 \) und \(E_4 \) hyperbelförmig auseinander. Da \(\omega \) linear mit \(B \) geht, ist es qualitativ egal, ob wir über \(B_0 \) oder \(\omega \) auftragen.

Abbildung 1: Zeeman-Diagramm des 1S-Zustandes eines Positroniums

Die oberen drei Linien (mit den Energien \(E_1, E_2 \) und \(E_3 \)) gehören dabei zu den Zuständen mit \(F = 1 \), die untere (mit der Energie \(E_4 \)) zu \(F = 0 \). Die asymptotischen Geraden sind gegeben durch

\[g = -\frac{Ah^2}{4} \pm \omega h \]
18. Aufgabe: Eichinvarianz

Der Hamiltonoperator eines geladenen Teilchens im elektromagnetischen Feld lautet

\[H = \frac{1}{2m}(\vec{p} - q\vec{A})^2 + q\Phi \]

Unter den Transformation, wie diese auf dem Blatt gegeben sind, ist zu zeigen:

\[i\hbar \frac{\partial \Psi'}{\partial t} = H'\Psi' \iff i\hbar \frac{\partial \Psi}{\partial t} = H\Psi \]

Der Impulsoperator im Hamiltonoperator kann umgeschrieben werden zu

\[\vec{p} = \frac{\hbar}{i} \nabla \]

welches angewendet auf \(\Psi' \)

\[\vec{p}(\Psi e^{i\frac{q}{\hbar} \Lambda}) = e^{i\frac{q}{\hbar} \Lambda}(\vec{p}\Psi) + \Psi e^{i\frac{q}{\hbar} \Lambda} q \nabla \Lambda \]

ergibt. Nun werden in \(i\hbar \frac{\partial \Psi'}{\partial t} = H'\Psi' \) alle gegebenen Transformationen eingesetzt und so weit ausgerechnet, bis man auf die ursprüngliche Schrödingergleichung kommt.

\[i\hbar \frac{\partial}{\partial t} (\Psi e^{i\frac{q}{\hbar} \Lambda}) = \left(\frac{1}{2m}(\vec{p} - q\vec{A} - q\nabla \Lambda)^2 + q\Phi - q\frac{\partial}{\partial t} \Lambda \right) \Psi e^{i\frac{q}{\hbar} \Lambda} \]

\[\Rightarrow i\hbar \left(\frac{\partial}{\partial t} \Psi \right) e^{i\frac{q}{\hbar} \Lambda} + i\hbar \Psi e^{i\frac{q}{\hbar} \Lambda} q \frac{\partial}{\hbar \partial t} \Lambda = \left(\frac{1}{2m}(\vec{p} - q\vec{A} - q\nabla \Lambda)e^{i\frac{q}{\hbar} \Lambda}(\vec{p} + q\nabla \Lambda - q\vec{A} - q\nabla \Lambda)\Psi \right. \]

\[+ e^{i\frac{q}{\hbar} \Lambda}(q\Phi - q\frac{\partial}{\partial t} \Lambda)\Psi \]

\[\Rightarrow e^{i\frac{q}{\hbar} \Lambda} i\hbar \frac{\partial}{\partial t} \Psi = e^{i\frac{q}{\hbar} \Lambda} \left(\frac{1}{2m}(\vec{p} - q\vec{A})^2 + q\Phi \right) \Psi \]

wobei \(e^{i\frac{q}{\hbar} \Lambda} \) eine globale Phase ist. Somit ist die Schrödingergleichung invariant.

6. Übung
(*) Aufgabe 1 (4P): Lorentz-Transformation des elektromagnetischen Feldes
(a) Leiten Sie aus demTransformationsverhalten des Feldstärketensors

\[F'_{\mu\nu} = \Lambda^\rho_\mu \Lambda^\sigma_\nu F_{\rho\sigma} \]

das Transformationsverhalten der Felder \(\vec{E} \) und \(\vec{B} \) unter einer Lorentz-Transformation entlang der \(z \)-Achse her.
(b) Ein punktförmiges Teilchen mit der elektrischen Ladung \(Q \) befinde sich in einem Inertialsystem \(IS \) in Ruhe. Das System \(IS \) bewege sich gegenüber dem Laborsystem \(IS' \) mit der Geschwindigkeit \(v \) parallel zur \(z \)-Achse.
(i) Bestimmen Sie die Ladungsdichte \(\rho \) und die Stromdichte \(\vec{j} \) im Ruhesystem des Teilchens und berechnen Sie daraus die Felder \(\vec{E} \) und \(\vec{B} \).
(ii) Berechnen Sie die Größen \(\vec{E}' \) und \(\vec{B}' \) im Laborsystem unter Verwendung der Lorentz-Transformation.

(*) Aufgabe 2 (2P): Lorentz-Transformation des Levi-Civita-Tensors
(a) Zeigen Sie, dass der Levi-Civita-Tensor ein Pseudotensor vierten Stufe unter Lorentz-Transformation ist, d.h. dass gilt

\[\varepsilon'^{\alpha\beta\gamma\delta} = \text{det}(\Lambda) \Lambda^\alpha_\alpha' \Lambda^\beta_\beta' \Lambda^\gamma_\gamma' \Lambda^\delta_\delta' \varepsilon^{\alpha'\beta'\gamma'\delta'} = \varepsilon^{\alpha\beta\gamma\delta} \]

(b) Zeigen Sie nun, dass \(\varepsilon^{\alpha\beta\gamma\delta} a_\alpha b_\beta c_\gamma d_\delta \), wobei \(a_\alpha, b_\beta, c_\gamma, d_\delta \) Vierervektoren sind, ein Pseudoskalar unter Lorentz-Transformationen ist.

(*) Aufgabe 3 (4P): Relativistisches Teilchen im elektromagnetischen Feld
Betrachten Sie ein relativistisches, geladenes Teilchen im elektromagnetischen Feld.
(a) Berechnen Sie die Bewegungsgleichungen aus der Lagrangefunktion

\[L = -mc^2 \sqrt{1 - \beta^2} - q\Phi(\vec{r},t) + q\vec{v} \cdot \vec{A}(\vec{r},t) \] \quad \beta^2 = \frac{\vec{v}^2}{c^2} \]
\(\vec{A} \) ist das Vektorpotential und \(\Phi \) ist das skalare Potential.
(b) Zeigen Sie, dass die kovariante Formulierung der Lorentz-Kraft gilt

\[K^\mu = qF^{\mu\nu} \frac{p_\nu}{m} \]
\(p_\nu \) der Viererimpuls des Teilchens ist. Die Lorentz-Kraft \(\vec{F}_L \) ist, wie in der klassischen Mechanik, gegeben durch \(\vec{F}_L = q(\vec{E} + \vec{v} \times \vec{B}) \), wobei \(\vec{E} \) und \(\vec{B} \) das elektrische bzw. magnetische Feld bezeichnet.
(c) Stellen Sie die kovariante Form der Bewegungsgleichung auf.
Aufgabe 4: $Z \rightarrow \tau^+ \tau^-$

Ein ruhendes Z-Boson der Masse $M_Z = 91.1887 \text{ GeV}/c^2$ zerfalle in ein $\tau^+ \tau^-$-Paar ($m_{\tau^\pm} = 1.7771 \text{ GeV}/c^2$).

(a) Berechnen Sie die Energie und den Impuls der Zerfallsprodukte (in GeV bzw. GeV/c).

(b) Die mittlere Lebensdauer ruhender τ-Leptonen beträgt $2.956 \cdot 10^{-13}$s. Wie weit kommen die τ-Leptonen im Mittel?
19. Aufgabe: Lorentz-Transformation des elektromagnetischen Feldes

(a) Wir setzen den Feldstärketensor an als (siehe Vorlesung)

\[
F_{\mu\nu} = \begin{pmatrix}
0 & \frac{E_x}{c} & \frac{E_y}{c} & \frac{E_z}{c} \\
\frac{-E_x}{c} & 0 & -B_z & B_y \\
\frac{-E_y}{c} & B_z & 0 & -B_x \\
\frac{-E_z}{c} & -B_y & B_x & 0
\end{pmatrix}_{\mu\nu}
\]

Da es sich beim betrachteten Problem um einen Boost in z-Richtung handelt, setzen wir an:

\[
\Lambda^\beta_{\alpha} = \begin{pmatrix}
\gamma & 0 & 0 & -\beta\gamma \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\beta\gamma & 0 & 0 & \gamma
\end{pmatrix}_{\alpha\beta}
\]

Da es sich auch beim betrachteten transformierten Feldstärketensor um einen antisymmetrischen Tensor 2. Stufe handelt, müssen wir nur 6 Komponenten berechnen (die Diagonale und die anderen 6 ergeben sich von selbst). Wir führen die Rechnung zum Beispiel für die (0,1)-Komponente (also \(\mu = 0\) und \(\nu = 1\)) aus:

\[
F'_{0,1} = \Lambda^\rho_0 \Lambda^\sigma_1 F_{\rho\sigma}
\]

\(\Lambda^\rho_0\) nimmt für \(\rho = 0\) den Wert \(\gamma\) an und für \(\rho = 3\) den Wert \(-\beta\gamma\). \(\Lambda^\sigma_1\) nimmt nur für \(\sigma = 1\) den Wert 1 an. Man erhält also

\[
F'_{0,1} = \gamma F_{0,1} - \beta\gamma F_{3,1} = \gamma \left(\frac{E_x}{c} + \beta B_y \right)
\]

Damit ist das neue \(E'_x\)-Feld gegeben durch

\[
E'_x = \gamma (E_x + \beta c B_y)
\]
Diese Rechnung führt man analog auch für die anderen Komponenten durch. Man erhält schlussendlich für den transformierten Feldstärketensor:

\[
F'_{\mu\nu} = \begin{pmatrix}
0 & (\frac{E_x}{c} + B_y) \gamma & (\frac{E_x}{c} - B_x) \gamma & \frac{E_x}{c} \\
-\left(\frac{E_x}{c} + B_y\right) \gamma & 0 & -B_z & (\frac{E_y}{c} + B_y) \gamma \\
-\left(\frac{E_x}{c} - B_x\right) \gamma & B_z & 0 & (\frac{E_y}{c} - B_z) \gamma \\
-\frac{E_x}{c} & -\left(\frac{E_x}{c} + B_y\right) \gamma & -\left(\frac{E_y}{c} - B_x\right) \gamma & 0
\end{pmatrix}_{\mu\nu}
\]

wobei beim Berechnen der (0,3)-Komponente die Beziehung

\[
\gamma^2 = \frac{1}{1 - \beta^2}
\]

benutzt wurde. Die Felder transformieren also wie folgt:

\[
E'_x = \gamma (E_x + c\beta B_y) \quad B'_x = \gamma \left(B_x - \frac{E_y}{c}\right) \\
E'_y = \gamma (E_y - c\beta B_x) \quad B'_y = \gamma \left(B_y + \frac{E_x}{c}\right) \\
E'_z = E_z \quad B'_z = B_z
\]

(b) In seinem Ruhezystem hat das Teilchen natürlich keine Geschwindigkeit. Es existiert also auch keine bewegte Ladung und damit kein Strom.

\[
\vec{j} = 0
\]

Die gesamte Ladungsdichte wird nur von diesem einen Teilchen (was wir am Ursprung sitzend annehmen) gegeben. Es ist also

\[
\rho = Q\delta(x)\delta(y)\delta(z)
\]

Das magnetische Feld ist aufgrund des fehlenden Stroms einfach Null. Das elektrische Feld ist nach der Coulombkraft einfach gegeben durch

\[
\vec{E} = \frac{Q}{4\pi \varepsilon_0} \frac{\vec{r}}{r^3} = \frac{Q}{4\pi \varepsilon_0} \frac{1}{(x^2 + y^2 + z^2)^{3/2}} \begin{pmatrix} x \\ y \\ z \end{pmatrix}
\]

Um jetzt die Felder im Laborsystem auszurechnen, benutzen wir genau die oben genannten Transformationen. Das \vec{B}-Feld im IS ist Null, weshalb die Gleichungen...
einfacher werden. Zur Abkürzung setzen wir

\[a = \frac{Q}{4\pi\varepsilon_0 (x^2 + y^2 + z^2)^{3/2}} \]

Man erhält

\[
\begin{align*}
E'_x &= \gamma (E_x + c\beta B_y) = \gamma E_x = \gamma ax \\
E'_y &= \gamma (E_y - c\beta B_x) = \gamma E_y = \gamma ay \\
E'_z &= E_z = az \\
B'_x &= \gamma \left(B_x - \frac{\beta E_y}{c} \right) = -\gamma \frac{\beta E_y}{c} = -\frac{\gamma v}{c^2} ay \\
B'_y &= \gamma \left(B_y + \frac{\beta E_x}{c} \right) = \gamma \frac{\beta E_x}{c} = \frac{\gamma v}{c^2} ax \\
B'_z &= B_z = 0
\end{align*}
\]

Da wir die Felder jedoch auch in den Koordinaten des Laborsystems (also die gestrichenen) und nicht des Ruhesystems darstellen möchten, müssen wir noch ersetzen:

\[
x' = x \quad y' = y \quad z = \gamma (z' + \beta ct')
\]

Wir erhalten also:

\[
\begin{align*}
E'_x &= \gamma ax' \\
E'_y &= \gamma ay' \\
E'_z &= \gamma (z' + \beta ct') \\
B'_x &= -\frac{\gamma v}{c^2} ay' \\
B'_y &= \frac{\gamma v}{c^2} ax' \\
B'_z &= 0
\end{align*}
\]

mit

\[a = \frac{Q}{4\pi\varepsilon_0 (x'^2 + y'^2 + \gamma^2 (z' + \beta ct')^2)^{3/2}} \]

Bemerkungen: Obwohl im Ruhesystem kein Magnetfeld vorhanden war, erhält man im Laborsystem ein \(\vec{B} \)-Feld in x- und y-Richtung. Darin liegt die eigentliche physikalische Herkunft magnetischer Felder.

20. Aufgabe: Lorentz-Transformation des Levi-Civita-Tensors

(a) Zum einfacheren Unterscheiden benutzen wir \(\varepsilon \) als das bekannte Levi-Cevita-Symbol (also eine Zahl) und \(\epsilon \) als den Tensor mit den bekannten Transformationseigenschaften.
Für eine Matrix A der Größe $n \times n$ gilt der Zusammenhang zwischen ε und der Determinante (in nicht kovarianter Schreibweise!):

$$\varepsilon_{j_1 \ldots i_n} A_{j_1 i_1} \cdots A_{j_n i_n} = \varepsilon_{i_1 \ldots i_n} \det A$$

Dies schreiben wir jetzt um in eine kovariante Form für eine Matrix Λ. Dabei ist

$$A_{ij} = \Lambda^i_j = \Lambda^j_i$$

und das Levi-Cevita-Symbol entspricht dem ϵ-Tensor in kovarianter Schreibweise:

$$\varepsilon_{\alpha\beta\gamma\delta} = \epsilon_{\alpha\beta\gamma\delta}$$

Man erhält also:

$$\epsilon_{\alpha\beta\gamma\delta} \det \Lambda = \Lambda^\alpha_{\alpha'} \Lambda^\beta_{\beta'} \Lambda^\gamma_{\gamma'} \Lambda^\delta_{\delta'} \epsilon^{\alpha'\beta'\gamma'\delta'}$$

Dies ist gerade der Term in der Transformation, also

$$\epsilon^{\alpha\beta\gamma\delta} = \det \Lambda \epsilon_{\alpha\beta\gamma\delta}$$

Nun ist die Determinante von Λ entweder 1 (eigentliche LT) oder -1 (uneigentliche LT). Vor allem ist aber ihr Quadrat immer 1. Damit ist die Behauptung

$$\epsilon^{\alpha\beta\gamma\delta} = \epsilon_{\alpha\beta\gamma\delta}$$

bewiesen.

(b) Wir setzen

$$T = \epsilon^{\alpha\beta\gamma\delta} a_{\alpha} b_{\beta} c_{\gamma} d_{\delta}$$

mit den vier 4-Vektoren a, b, c, d. Um nachzuprüfen, dass T ein Pseudoskalar ist, müssen wir die Form von T nach einer Transformation betrachten. Im neuen Koordinatensystem müssen wir also alle Größen durch ihre gestrichenen Pendants ersetzen:

$$T' = \epsilon^{\alpha\beta\gamma\delta} a'_{\alpha} b'_{\beta} c'_{\gamma} d'_{\delta}$$

Für die 4-Vektoren kennen wir ihre Transformationseigenschaft schon:

$$a'_{\alpha} = \Lambda^\alpha_{\alpha'} a_{\alpha'}$$
Nach der Aufgabe davor behält der ϵ-Tensor einfach seine Form:

$$\epsilon^{\alpha\beta\gamma\delta} = \epsilon^{\alpha'\beta'\gamma'\delta'}$$

Wir erhalten dann:

$$T' = \Lambda^\alpha_\alpha \Lambda^\beta_\beta \Lambda^\gamma_\gamma \Lambda^\delta_\delta a_{\alpha'} b_{\beta'} c_{\gamma'} d_{\delta'} \epsilon^{\alpha'\beta'\gamma'\delta'}$$

Wieder berufen wir uns auf die Beziehung von oben:

$$\epsilon^{\alpha\beta\gamma\delta} \det \Lambda = \Lambda^\alpha_\alpha \Lambda^\beta_\beta \Lambda^\gamma_\gamma \Lambda^\delta_\delta \epsilon^{\alpha'\beta'\gamma'\delta'}$$

Da dies für beliebige Indizes gilt, gilt es auch unter Vertauschung von α und α' beziehungsweise analog für die anderen Indizes. Man erhält dann die Beziehung:

$$\epsilon^{\alpha'\beta'\gamma'\delta'} \det \Lambda = \Lambda^\alpha_\alpha \Lambda^\beta_\beta \Lambda^\gamma_\gamma \Lambda^\delta_\delta \epsilon^{\alpha\beta\gamma\delta}$$

Und somit für T':

$$T' = a_{\alpha'} b_{\beta'} c_{\gamma'} d_{\delta'} \epsilon^{\alpha'\beta'\gamma'\delta'} \det \Lambda$$

Die Indizes in einer Summe können auch umbenannt werden. Wir wechseln also von α' auf α (und analog für den Rest) und erhalten

$$T' = a_{\alpha} b_{\beta} c_{\gamma} d_{\delta} \epsilon^{\alpha\beta\gamma\delta} \det \Lambda = T \det \Lambda$$

Wir haben also gesehen, dass T wie ein Pseudoskalar transformiert.

21. Aufgabe: Relativistisches Teilchen im elektromagnetischen Feld

(a) Wir geben die Behauptung ab, dass wir gerade die schon bekannte Formel für die Lorentzkraft erhalten:

$$\dot{p}^i = F^i_L = qE^i + q(\vec{v} \times \vec{B})^i$$

mit dem Magnetfeld \vec{B} und dem elektrischen Feld \vec{E}. Setzen wir die Formeln für die Coulombeichung ein, so erhalten wir:

$$E^i = -\left(\nabla \phi\right)^i - \frac{\partial A^i}{\partial t}$$

und

$$B^k = \epsilon_{klm} \frac{\partial A^m}{\partial x^l}$$
Setzen wir dies ein erhalten wir zuerst

\[(\vec{v} \times \vec{B})^i = \varepsilon_{ijk} \varepsilon_{klm} v^j \frac{\partial A^m}{\partial x^l} = \varepsilon_{kij} \varepsilon_{klm} v^j \frac{\partial A^m}{\partial x^l} = (\delta_i \delta_{jm} - \delta_{im} \delta_{jl}) v^j \frac{\partial A^m}{\partial x^l} = v^j \frac{\partial A^j}{\partial x^i} - v_j \frac{\partial A^i}{\partial x^j}\]

und dann schließlich für \(\vec{F}_L\):

\[F^i_L = -q(\nabla \phi)^i + \frac{\partial A^i}{\partial t} + q v^j \frac{\partial A^j}{\partial x^i} - q v^j \frac{\partial A^i}{\partial x^j}\]

Wenden wir uns jetzt die Lagrangefunktion zu. Es ist:

\[\frac{\partial L}{\partial x^i} = -q \frac{\partial \phi}{\partial x^i} + q v^j \frac{\partial A^j}{\partial x^i} = -q(\nabla \phi)^i + q v^j \frac{\partial A^j}{\partial x^i}\]

und

\[\frac{\partial L}{\partial \dot{x}^i} = \gamma mc^2 \dot{x}^i + q A^i = \gamma m v^i + q A^i = p^i + q A^i\]

Deshalb folgt aus der Euler-Lagrange-Formel:

\[\frac{d}{dt} \frac{\partial L}{\partial \dot{x}^i} = \dot{p}^i + q \frac{d A^i}{d t} = -q(\nabla \phi)^i + q v^j \frac{\partial A^j}{\partial x^i}\]

oder umgestellt und die totale Ableitung eingesetzt:

\[\dot{p}^i = -q(\nabla \phi)^i + q v^j \frac{\partial A^j}{\partial x^i} - q \frac{d A^i}{d t} = -q(\nabla \phi)^i + q v^j \frac{\partial A^j}{\partial x^i} - q \frac{\partial A^i}{\partial t} - q \frac{\partial A^i}{\partial x^j} v^j\]

Tatsächlich ist das genau die klassische Lorentzkraft.

(b) Wir ersetzen die \(F^{\mu \nu}\) durch ihre Definition, wobei \(B\) das Magnetfeld und \(E\) das elektrische Feld ist:

\[F^{ij} = -\varepsilon_{ijk} B^k \quad F^{i0} = -F^{0i} = \frac{E^i}{c}\]

Auch der relativistische Impuls 4-Vektor wird durch seine klassischen Definitionen ersetzt:

\[p_0 = p^0 = \frac{E}{c} = \gamma mc \quad p_j = -p^j = -\gamma mv^j\]

mit der klassischen Geschwindigkeit \(v\). Man erhält dann für \(\mu = 0\):

\[q F_0^0 \frac{p_0}{m} + q F_0^0 \frac{p_0}{m} + q F^{0i} \frac{p_i}{m} = q \frac{E^i v^i \gamma}{c} = q \frac{E \cdot \vec{v}}{c} = \frac{\gamma}{c} F_L \cdot \vec{v}\]
Da $\vec{v} \times \vec{B}$ orthogonal auf \vec{v} steht. Für $\mu = i \neq 0$ erhält man

$$qF^{\mu\nu}p_{\nu} = qF^{00}p_0 + qF^{ij}p_j = q\frac{E_i}{c}\gamma_c + q\epsilon_{ijk}B^k\gamma v^j = \gamma q\left(E^i + (\vec{v} \times \vec{B})^i\right) = \gamma \vec{F}_L^i$$

Insgesamt erhalten wir also die geforderte Form:

$$K^\mu = qF^{\mu\nu}p_\nu$$

mit den Definitionen von K wie auf dem Blatt. Die Größe K ist offensichtlich ein 4-Vektor (da sie nur durch 4-Vektoren gebildet wird) und deshalb nutzbar für eine kovariante Formulierung.

(c) Es ist die Eigenzeit τ definiert als:

$$d\tau = \gamma dt$$

und deshalb:

$$\frac{dp^i}{d\tau} = \frac{d}{dt}\frac{dt}{d\tau}p^i = \gamma p^i = \gamma F^i_L = K^i$$

nach den beiden Aufgaben davor. Da K und p als 4-Vektoren kovariant sowie τ als Eigenzeit invariant unter Lorentztransformationen sind, ist diese Formulierung kovariant. Für die fehlende Komponente gilt:

$$\frac{dp^0}{d\tau} = \gamma \frac{dE}{dt} = \frac{\gamma}{c} \int \vec{F}_L \cdot ds = \frac{\gamma}{c} \vec{F}_L \cdot \vec{v} = K^0$$

Insgesamt erhält man also die kovariante Formulierung:

$$\frac{dp^\mu}{d\tau} = K^\mu$$

22. **Aufgabe: $Z \rightarrow \tau^+ \tau^-$**

(a) Im Ruhezustand des Z-Bosons gilt für die Viererimpulse des Bosons und der Leptonen:

$$p^\mu_Z = \begin{pmatrix} M_Z \cdot c \\ 0 \end{pmatrix} \quad p^\mu_{\tau^\pm} = \begin{pmatrix} E_{\tau^\pm} \\ \vec{p}_{\tau^\pm} \end{pmatrix}$$

Es gelten Energie- und Impulserhaltung beim Zerfall:

$$p^\mu_Z = p^\mu_{\tau^+} + p^\mu_{\tau^-}$$
Hieraus erhält man

\[M_Z \cdot c^2 = E_{\tau^+} + E_{\tau^-} \]
\[\vec{p}_0 = \vec{p}_{\tau^+} + \vec{p}_{\tau^-} \]
\[\Rightarrow \vec{p}_{\tau^+} = -\vec{p}_{\tau^-} \]

Da neben den Massen auch der Betrag der Impulse der beiden \(\tau \)-Leptonen gleich sind, haben diese auch dieselbe Energie:

\[E_{\tau^+} = E_{\tau^-} = \frac{1}{2} M_Z c^2 \approx 45.6 \text{ GeV} \]

\[|\vec{p}_{\tau^\pm}| = \sqrt{\left(\frac{1}{2} M_Z c^2\right)^2 - (m_{\tau^\pm} c^2)^2} \cdot \frac{1}{c} \approx 45.6 \frac{\text{Gev}}{c} \]

Man beachte, dass die Zahlenwerte fast identisch sind. Dies liegt daran, dass die Masse des \(Z \)-Bosons viel größer ist als die der \(\tau \)-Leptonen. Dadurch geht der zweite Teil unter der Wurzel gegen null. Die Richtungen der Impulse lassen sich nicht bestimmen. Es ist nur bekannt, dass die Teilchen in entgegengesetzte Richtungen fliegen.

(b) Es ist die mittlere Lebensdauer der Leptonen im Ruhesystem gegeben. Da diese jedoch nicht in Ruhe sind, wird das Laborsystem betrachtet:

\[T = \gamma \cdot T_0 \]

Für den zurückgelegten Weg ergibt sich dann:

\[x = v_{\tau} \cdot T \]
\[= \gamma \cdot v_{\tau} \cdot T_0 \]
\[= \frac{p_\tau}{m_\tau} \cdot T_0 \]
\[\approx 2.2 \cdot 10^{-3} \text{ m} \]

7. Übung
Aufgabe 1: Rechnen mit „natürlichen Einheiten“

In der Teilchenphysik rechnet man in einem Einheitensystem mit $\hbar = c = 1$. Das bedeutet, dass Geschwindigkeiten in Einheiten der Lichtgeschwindigkeit und Wirkungen in Einheiten des Planckschen Wirkungsquantums dividiert durch 2π angegeben werden.

(a) Welche Beziehungen folgen daraus zwischen den Einheiten Meter, Sekunde und MeV?

Hinweis: $c = 299,792,458$ m/s und $\hbar = 6,582,119 \cdot 10^{-22}$ MeV s.

(b) Welcher Masse in Kilogramm entspricht 1 MeV?

Hinweis: 1 eV = $1,602176 \cdot 10^{-19}$ J.

(c) Drücken Sie die inverse Pionenmasse ($m_\pi = 140$ MeV) in fm ($= 10^{-15}$ m) aus.

(*) Aufgabe 2 (6P): Klein-Gordon-Gleichung für Teilchen im elektromagnetischen Feld

(a) (i) Leiten Sie die Klein-Gordon-Gleichung für ein geladenes, relativistisches Teilchen im elektromagnetischen Feld her.

Hinweis: Benutzen Sie dazu die Ergebnisse aus Aufgabe 3 von Übungsblatt 5.

(ii) Zeigen Sie, dass Ψ^*, wobei Ψ eine Lösung der Klein-Gordon-Gleichung aus dem Aufgabenteil (a) ist, ein Teilchen mit entgegengesetzter Ladung beschreibt.

(b) Betrachten Sie nun die Klein-Gordon-Gleichung für ein Elektron in einem Coulomb-Potential $e\Phi(r) = -Ze\alpha/r$, wobei $\alpha = e^2/(4\pi\varepsilon_0\hbar c) \simeq 1/137$ die Feinstrukturkonstante bezeichnet.

(i) Zeigen Sie mit Hilfe des Separationsansatzes $\Psi(\vec{r},t) = u(\vec{r})e^{-iEt/\hbar}$, dass die Klein-Gordon-Gleichung auf folgende Differentialgleichung zurückgeführt werden kann

$$(-\hbar^2c^2\Delta + m^2c^4)u(\vec{r}) = [E - e\Phi(r)]^2u(\vec{r}).$$

(ii) Vergleichen Sie das daraus folgende Eigenwertproblem mit dem des nicht-relativistischen Wasserstoffatoms und zeigen Sie, dass die Energieeigenwerte für die gebundenen Zustände durch

$$E_{n,l} = \frac{mc^2}{\left(1 + \frac{(Z\alpha)^2}{(n-l-1/2)^2 + [(l+1/2)^2 - (Z\alpha)^2]^{1/2}}\right)^{1/2}}$$

bestimmt sind. Dabei sind n und l die Quantenzahlen des nicht-relativistischen Wasserstoffatoms.

(iii) Entwickeln Sie $E_{n,l}$ bis zur vierten Potenz von $Z\alpha$.

(*) Aufgabe 3 (4P): Gamma-Matrizien

(a) Die Gamma-Matrizien genügen der Dirac-Algebra

$$\{\gamma^\mu, \gamma^\nu\} = 2g^{\mu\nu}\mathbb{1}.$$

Sie haben in der Dirac-Darstellung folgende Form

$$\gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \gamma^i = \begin{pmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{pmatrix},$$
wobei $\sigma_i, i = 1, 2, 3$ die Pauli Matrizen bezeichnen.
Berechnen Sie die Matrizen

$$\sigma_{\mu\nu} = \frac{i}{2} [\gamma_\mu, \gamma_\nu], \quad \mu, \nu = 0, 1, 2, 3,$$

in der Dirac-Darstellung.

(b) Zeigen Sie, dass gilt

$$[\sigma_{\mu\nu}, \sigma_{\rho\omega}] = -2i(g_{\mu\rho}\sigma_{\nu\omega} - g_{\nu\rho}\sigma_{\mu\omega} - g_{\mu\omega}\sigma_{\nu\rho} + g_{\nu\omega}\sigma_{\mu\rho}).$$

(c) Zeigen Sie, dass gilt

\begin{align*}
A\vec{B} + \vec{B}A &= 2A \cdot B, \\
\gamma^\nu A_\nu &= 2A, \\
\gamma^\nu A\gamma_\nu &= 4A \cdot B,
\end{align*}

wobei A und B Vierervektoren sind und die Notation $\vec{A} = A_\mu \gamma^\mu$ verwendet wurde.

Hinweis: Für Aufgabenteil (b) und (c) soll keine explizite Darstellung der Gamma-Matrizen verwendet werden.

Aufgabe 4: Gyromagnetischer Faktor des Protons

Um ein Proton zu beschreiben, muss die Dirac-Gleichung in Anwesenheit eines magnetischen Feldes um den Term $(k_p c/4m_p)\sigma_{\mu\nu}F^{\mu\nu}\Psi$ erweitert werden. $F^{\mu\nu}$ ist der Feldstärke tensor und $\sigma_{\mu\nu}$ wurde in Gleichung (1) definiert. Bestimmen Sie k_p so, dass der gemessene Wert des gyromagnetischen Faktors des Protons, $g_p = 5.59$ reproduziert wird.

Hinweis: Betrachten Sie dabei ein schwaches homogenes Magnetfeld $\vec{A} = \frac{1}{2}\vec{B} \times \vec{r}$.

23. Aufgabe: Rechnen mit ”natürlichen Einheiten”

(a) Es werden die bekannten Größen gleich 1 gesetzt und dann die Gleichung nach s aufgelöst:

\[c = 299 \, 792 \, 458 \frac{m}{s} \Rightarrow 1 \, s = 299 \, 792 \, 458 \, m \]
\[h = 6.582 \, 119 \cdot 10^{-22} \, \text{MeV} \cdot s \Rightarrow 1 \, s = \frac{1}{6.582 \, 119 \cdot 10^{-22} \cdot 1 \, \text{MeV}} \]

Anmerkung: diese Schreibweise ist nicht gängig. Korrekter ist:

\[1 \, s = \frac{299 \, 792 \, 458}{c} \, m \]
\[1 \, s = \frac{h}{6.582 \, 119 \cdot 10^{-22} \cdot 1 \, \text{MeV}} \]

(b) Es ist

\[1 \, \text{MeV} = 1.6 \cdot 10^{-19} \, \text{J} \]

mit

\[J = \text{kg} \cdot \frac{m^2}{s^2} \]

Die \(\frac{m}{s} \) können als c ausgedrückt werden, sodass gilt:

\[m = 1 \, \text{MeV} \cdot \frac{c^2}{1} = \frac{1.6 \cdot 10^{-19}}{(3 \cdot 10^8)^2} \, \text{kg} = 1.78 \cdot 10^{-36} \, \text{kg} \]

(c) Um von \(\frac{1}{140 \, \text{MeV}} \) auf m zu kommen, kann man \(\hbar \) und \(c \) dazu multiplizieren:

\[l = \frac{\hbar \cdot c}{140 \, \text{MeV}} = 1.41 \, \text{fm} \]

(a) Zur Vereinfachung betrachten wir immer nur eine Ortskomponente. Die Klein-Gordon-Gleichung ohne elektromagnetische Felder lautet:

\[\left(\Box + \frac{m^2 c^2}{\hbar^2} \right) \psi = \left(\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} + \frac{m^2 c^2}{\hbar^2} \right) \psi = 0 \]
Aus Aufgabe 3 von ÜB 5 wissen wir, dass wenn \(\psi \) die Gleichung unter Potentialen \(\phi \) und \(A \) erfüllt, dann auch \(\tilde{\psi} \) mit

\[
\tilde{\psi} = e^{i\Lambda} \psi = e^{iA} \psi \quad \tilde{\phi} = \phi - \frac{\partial \Lambda}{\partial t} \quad \tilde{A} = A + \frac{\partial \Lambda}{\partial x}
\]

Die obige KG-Gleichung gilt für Potentiale \(\phi = A = 0 \). Die KG-Gleichung muss eichinvariant sein, weshalb auch \(\tilde{\psi} \) die obige Gleichung erfüllen muss. Also:

\[
\left(\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} + \frac{m^2 c^2}{\hbar^2} \right) \tilde{\psi} = e^{i\Lambda} \left[\frac{1}{c^2} \left(2f \frac{\partial \Lambda}{\partial t} \frac{\partial \psi}{\partial t} + \psi \left(f \frac{\partial \Lambda}{\partial t} \right)^2 + \psi f \frac{\partial^2 \Lambda}{\partial t^2} + \frac{\partial^2 \psi}{\partial t^2} \right) - \left(2f \frac{\partial \Lambda}{\partial x} \frac{\partial \psi}{\partial x} + \psi \left(f \frac{\partial \Lambda}{\partial x} \right)^2 + \psi f \frac{\partial^2 \Lambda}{\partial x^2} + \frac{\partial^2 \psi}{\partial x^2} \right) \right] = 0
\]

Nach Definition ist \(\frac{\partial \Lambda}{\partial x} = \tilde{A} \) und \(\frac{\partial \Lambda}{\partial t} = -\tilde{\phi} \). Außerdem ist

\[
\left(\frac{\partial}{\partial x} - f \tilde{A} \right)^2 \psi = \frac{\partial^2}{\partial x^2} \psi - \partial \frac{\partial}{\partial x} (f \tilde{A} \psi) - f \tilde{A} \frac{\partial}{\partial x} \psi + f^2 \tilde{A}^2 \psi = \frac{\partial^2 \psi}{\partial x^2} - f \frac{\partial \tilde{A}}{\partial x} \psi - 2f \tilde{A} \frac{\partial \psi}{\partial x} + f^2 \tilde{A}^2 \psi
\]

beziehungsweise

\[
\left(\frac{\partial}{\partial t} + f \tilde{\phi} \right)^2 \psi = \frac{\partial^2 \psi}{\partial t^2} + f \frac{\partial \tilde{\phi}}{\partial t} \psi + 2f \tilde{\phi} \frac{\partial \psi}{\partial t} + f^2 \tilde{\phi}^2 \psi
\]

Dies sind gerade die selben Ausdrücke wie oben (wenn wir die Definition von \(\Lambda \) einsetzen). Insgesamt erhalten wir also

\[
\left(\frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) \tilde{\psi} = e^{i\Lambda} \left[\left(\frac{\partial}{\partial x} + f \tilde{A} \right)^2 + \frac{1}{c^2} \left(\frac{\partial}{\partial t} - f \tilde{\phi} \right)^2 + \frac{m^2 c^2}{\hbar^2} \right] \psi = 0
\]

Diese KG-Gleichung für anwesende elektromagnetische Felder ist eichinvariant (nach Wahl) und führt sich ohne Felder wieder in die bekannte KG-Gleichung über. Unterdrücken wir die Tilde (da die Gleichung für beliebige Felder gilt) und gehen wir wieder zurück in 3 Dimensionen, so erhalten wir:

\[
\left[\frac{1}{c^2} \left(\frac{\partial}{\partial t} - \frac{iq}{\hbar} \phi \right)^2 - \left(\nabla + \frac{iq}{\hbar} \tilde{A} \right)^2 + \frac{m^2 c^2}{\hbar^2} \right] \psi = 0
\]
Bemerkung Man kann die Gleichung auch in der Form:

\[
\left(i\hbar \frac{\partial}{\partial t} + q\phi \right)^2 - c^2 \left(\frac{\hbar}{i} \nabla + q\vec{A} \right)^2 - m^2 c^4 \right] \psi = 0
\]

schreiben. Man kann hier sofort die Form

\[(E - V)^2 \psi = \left[c^2 \vec{\Pi}^2 + m^2 c^4 \right] \psi \quad \vec{\Pi} = \vec{p} + q\vec{A} \quad V = -q\phi
\]

ablesen, wie wir auch nach dem Korrespondenzprinzip erwartet haben. Sei nun \(\psi\) eine Lösung der KG-Gleichung von oben. Es gilt also

\[
\left[\frac{1}{c^2} \left(\frac{\partial}{\partial t} - i\frac{q}{\hbar} \phi \right)^2 - \left(\nabla + i\frac{q}{\hbar} \vec{A} \right)^2 + \frac{m^2 c^2}{\hbar^2} \right] \psi = 0
\]

Diese Gleichung ist immer noch richtig, wenn wir sie komplex konjugieren:

\[
\psi^* \left[\frac{1}{c^2} \left(\frac{\partial}{\partial t} - i\frac{q}{\hbar} \phi \right)^2 - \left(\nabla + i\frac{q}{\hbar} \vec{A} \right)^2 + \frac{m^2 c^2}{\hbar^2} \right] \psi^* = \psi^* \left[\frac{1}{c^2} \left(\frac{\partial}{\partial t} + i\frac{q}{\hbar} \phi \right)^2 - \left(\nabla - i\frac{q}{\hbar} \vec{A} \right)^2 + \frac{m^2 c^2}{\hbar^2} \right]
\]

\(\psi^*\) (was ein Bra ist und deshalb links steht!) erfüllt also gerade die KG-Gleichung, wenn man \(q\) zu \(-q\) ändert.

(b) Wir schreiben die Gleichung von oben

\[
\left[\frac{1}{c^2} \left(\frac{\partial}{\partial t} - i\frac{q}{\hbar} \phi \right)^2 - \left(\nabla + i\frac{q}{\hbar} \vec{A} \right)^2 + \frac{m^2 c^2}{\hbar^2} \right] \psi = 0
\]

etwas um und setzen den Ansatz ein:

\[
\left(\left[-\hbar^2 c^2 \nabla^2 + m^2 c^4 \right] u(\vec{r}) \right) e^{-iEt/\hbar} = - \left(\frac{\hbar}{i} \frac{\partial}{\partial t} + i e\phi \right)^2 e^{-iEt/\hbar} u(\vec{r})
\]

mit \(q = -e\). Dabei wurde benutzt, dass nach Definition \(\vec{A} = 0\). Außerdem wirkt \(\nabla\) nur auf den Ortsteil von \(\psi\) und \(\frac{\partial}{\partial t}\) nur auf den zeitlichen Teil. Nun ist nach Wahl \(\frac{\partial \phi}{\partial t} = 0\) und deshalb:

\[
\left(\frac{\hbar}{i} \frac{\partial}{\partial t} + i e\phi \right)^2 e^{-iEt/\hbar} = \left(\hbar^2 \frac{\partial^2}{\partial t^2} + 2\hbar e\phi \frac{\partial}{\partial t} - e^2 \phi^2 \right) e^{-iEt/\hbar}
\]

\[
= \left(-\hbar^2 \frac{E^2}{\hbar^2} + 2\hbar e\phi \frac{E}{\hbar} - e^2 \phi^2 \right) e^{-iEt/\hbar} = - [E - e\phi]^2 e^{-iEt/\hbar}
\]
Teilen wir durch $e^{-iEt/\hbar}$ erhalten wir die behauptete Wellengleichung:

$$(-\hbar^2 c^2 \nabla^2 + m^2 c^4) u(\vec{r}) = [E - e\phi]^2 u(\vec{r})$$

Wir stellen diese Wellengleichung zuerst etwas um:

$$[-\Delta + \left(\frac{mc^2}{\hbar c}\right)^2 - \frac{E^2 + (e\phi)^2 - 2Ee\phi}{\hbar^2 c^2}] u = 0$$

Wir setzen $u = RY_{lm}$ und benutzen sowohl die Eigenschaften der Kugelflächenfunktionen sowie die Definition von ϕ und erhalten:

$$\left[-\frac{1}{r} \frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + \frac{m^2 c^4 - E^2}{\hbar^2 c^2} - \frac{(Z\alpha)^2}{r^2} - \frac{2EZ\alpha}{\hbar cr}\right] R = 0$$

Um jetzt auf die bekannte Schrödingergleichung zu kommen, machen wir gleich mehrere Substitutionen:

$$U = \frac{R}{r} \quad \rho = \beta r = \frac{Z\alpha E}{\hbar c} r \quad \lambda^2 = \frac{m^2 c^4 - E^2}{(Z\alpha)^2 E^2} \quad \tilde{l}(\tilde{l} + 1) = l(l + 1) - (Z\alpha)^2$$

man erhält dann zuerst

$$\left[\beta^2 \frac{d^2}{d\rho^2} - \frac{\tilde{l}(\tilde{l} + 1)}{\rho^2} + \frac{2\beta}{\rho} - \lambda^2 \beta^2\right] U = 0$$

und schließlich die gesuchte Form:

$$\left[\frac{d^2}{d\rho^2} - \frac{\tilde{l}(\tilde{l} + 1)}{\rho^2} + \frac{2}{\rho} - \lambda^2\right] U = 0$$

Aus der theoretischen Physik D (oder zum Beispiel Cohen-Tannoudji Band 2) kennen wir die Lösung:

$$\lambda = \frac{1}{k + \tilde{l}}$$

Wir erhalten also durch Umformung der obigen Substitution

$$E^2 = \frac{m^2 c^4}{\lambda^2 (Z\alpha)^2 + 1}$$
und mit
\[\tilde{l} = -\frac{1}{2} + \sqrt{\frac{1}{4} + l(l + 1) - (Z\alpha)^2} = -\frac{1}{2} + \sqrt{\left(l + \frac{1}{2}\right)^2 - (Z\alpha)^2} \]
schließlich:
\[E = \frac{mc^2}{\sqrt{1 + \frac{(Z\alpha)^2}{(k+l)^2}}} = \frac{mc^2}{\sqrt{1 + \frac{(Z\alpha)^2}{(k-1/2+[l+1/2-(Z\alpha)^2]^{1/2})^2}}} \]
Setzen wir jetzt noch \(n = k + l \) bzw.
\[k = n - l \]
dann erhalten wir die Behauptung.\(^1\)
Wir entwickeln \(E_{n,l} \) bis zur 4. Ordnung in \(Z\alpha \). Dazu setzen wir die Abkürzungen \(\beta = (Z\alpha)^2 \) und \(\gamma = l + 1/2 \). Außerdem betrachten wir \(\tilde{E} \) mit \(\tilde{E}mc^2 = E \). \(\tilde{E} \) lautet dann:
\[\tilde{E} = \frac{1}{\sqrt{1 + \frac{\beta}{(n-\gamma+\sqrt{\gamma^2-\beta})^2}}} \]
Da wir bis zur vierten Ordnung von \(Z\alpha \) entwickeln wollen, müssen wir bis zur 2. Ordnung von \(\beta \) entwickeln.

0. Ordnung Es ist ganz einfach
\[\tilde{E}(\beta = 0) = 1 \]

1. Ordnung Zuerst ist
\[\frac{d\tilde{E}}{d\beta} = -\frac{1}{2}\left(1 + \beta(n-\gamma+\sqrt{\gamma^2-\beta})^{-2}\right)^{-3/2} \]
\[\cdot \left[(n-\gamma+\sqrt{\gamma^2-\beta})^{-2} + \beta(n-\gamma+\sqrt{\gamma^2-\beta})^{-3}\sqrt{\gamma^2-\beta}^{-1}\right] \]
und damit
\[\frac{d\tilde{E}}{d\beta} \bigg|_{\beta=0} = -\frac{1}{2n^2} \]
\(^1\)Beim Vorgehen wurde an zwei Stellen die Wurzel gezogen ohne die negative Lösung zu beachten. Bei der Energie ist dieses Vorgehen klar, da es sich ja um gebundene Zustände handeln soll. Beim Drehimpuls \(\tilde{l} \) äh???
2. Ordnung Wir haben die innere Ableitung von ersten Teil schon berechnet:

\[
\frac{d^2 \tilde{E}}{d\beta^2} = \frac{3}{4} \left(1 + \beta (n - \gamma + \sqrt{\gamma^2 - \beta})^{-2} \right)^{-5/2}
\cdot \left[(n - \gamma + \sqrt{\gamma^2 - \beta})^{-2} + \beta (n - \gamma + \sqrt{\gamma^2 - \beta})^{-3} \sqrt{\gamma^2 - \beta} \right]^{2/3}
- \frac{1}{2} \left[(n - \gamma + \sqrt{\gamma^2 - \beta})^{-3/2} \right]^{2/3} \left[(n - \gamma + \sqrt{\gamma^2 - \beta})^{-3} \sqrt{\gamma^2 - \beta} \right]^{-1/3}
+ (n - \gamma + \sqrt{\gamma^2 - \beta})^{-1} \sqrt{\gamma^2 - \beta} + \ldots \right]
\]

Dabei wurden schon alle Teile, welche für \(\beta = 0 \) weggelassen. Man erhält für \(\beta = 0 \):

\[
\frac{d^2 \tilde{E}}{d\beta^2} = \frac{3}{4n^4} - \frac{1}{n^3\gamma}
\]

Die Lösung der Entwicklung ist also (mit \(\tilde{E} \) und \(\gamma \) wieder eingesetzt):

\[
E_{n,l} \approx mc^2 \left(1 - \frac{(Z\alpha)^2}{2n^2} + \left(\frac{3}{8n^4} - \frac{1}{(2l + 1)n^3} \right) (Z\alpha)^4 \right)
\]

25. Aufgabe: Gamma-Matrizen

(a) Nach der Darstellung der \(\gamma \)-Matrizen ist:

\[
\gamma_0\gamma_i = -\gamma^0\gamma^i = - \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{pmatrix} = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix}
\]

und analog

\[
\gamma_i\gamma_0 = -\gamma^i\gamma^0 = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix} = -\gamma_0\gamma_i
\]

Weiterhin ist offensichtlich

\[
\gamma_0\gamma_0 = \gamma^0\gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1 \otimes 1
\]

Schlussendlich findet man noch

\[
\gamma_i\gamma_j = \gamma^i\gamma^j = \begin{pmatrix} -\sigma_i\sigma_j & 0 \\ 0 & -\sigma_i\sigma_j \end{pmatrix} = -\sigma_i\sigma_j \otimes 1
\]
Nun können wir die Kommutatoren berechnen:

\[\sigma_{\mu \nu} = \frac{i}{2} [\gamma_\mu, \gamma_\nu] = 0 \]

\[\sigma_{0i} = \frac{i}{2} [\gamma_0, \gamma_i] = \frac{i}{2} (\gamma_0 \gamma_i - \gamma_i \gamma_0) = -i \begin{pmatrix} 0 & i\sigma_i \\ i\sigma_i & 0 \end{pmatrix} = -\frac{i}{2} [\gamma_i, \gamma_0] = -\sigma_{i0} \]

und

\[\sigma_{ij} = \frac{i}{2} [\gamma_i, \gamma_j] = \frac{i}{2} (\gamma_i \gamma_j - \gamma_j \gamma_i) = -\frac{i}{2} (\sigma_i \sigma_j - \sigma_j \sigma_i) \otimes 1 = -\frac{i}{2} [\sigma_i, \sigma_j] \otimes 1 \]

Die Vertauschungseigenschaft der Paulimatrizen kennen wir jedoch schon. man erhält:

\[\sigma_{ij} = -\frac{i}{2} 2i \varepsilon_{ijk} \sigma_k \otimes 1 = \varepsilon_{ijk} \sigma_k \otimes 1 = -\sigma_{ji} \]

(b) Mit der Antikommutatorrelation

\[[a, bc] = \{a, b\}c - b\{a, c\} \]

erhält man zuerst

\[[ad, bc] = a[d, bc] + [a, bc]d = a\{d, b\}c - ab\{d, c\} + \{a, b\}cd - b\{a, c\}d \]

Da die Antikommutatoren (wenn wir sie später einsetzen) die Identitätsmatrix ergeben, vertauschen sie mit den anderen Matrizen. Es ist dann

\[[[a, d], [b, c]] = 2\{d, c\}[b, a] + 2\{d, b\}[a, c] + 2\{a, c\}[d, b] + 2\{a, b\}[c, d] \]

Wir setzen jetzt ein

\[a = \gamma_\mu \quad b = \gamma_\rho \quad c = \gamma_\omega \quad d = \gamma_\nu \]

und erhalten dann mit \{\gamma_\mu, \gamma_\nu\} = 2g_{\mu\nu} 1 und \[\gamma_\mu, \gamma_\nu\] = \frac{2}{i} \sigma_{\mu\nu}

\[[\sigma_{\mu\nu}, \sigma_{\rho\omega}] = -\frac{1}{4} [[a, d], [b, c]] = -\frac{1}{i} (g_{\mu\omega} \sigma_{\nu\rho} + g_{\nu\rho} \sigma_{\mu\omega} + g_{\mu\omega} \sigma_{\nu\rho} + g_{\nu\rho} \sigma_{\mu\omega}) \]

Benutzen wir \sigma_{\mu\nu} = -\sigma_{\nu\mu} so erhalten wir die Behauptung.

(c) Seien \(A\) und \(B\) zwei Vierervektoren. Dann ist

\[A B + B A = A_{\mu} \gamma^\mu B_{\nu} \gamma^\nu + B_{\nu} \gamma^\nu A_{\mu} \gamma^\mu \]
Da es sich bei A_μ und B_ν nur um Zahlen handelt, ist dies

\[A_\mu B_\nu (\gamma^\mu \gamma^\nu + \gamma^\nu \gamma^\mu) = A_\mu B_\nu \{\gamma^\mu, \gamma^\nu\} = 2g^{\mu\nu} A_\mu B_\nu = 2A_\mu B^\mu = 2A \cdot B \]

nach Definition der γ-Matrizen und von g. Dies sei die erste Beziehung (1).

Da bei dieser Ableitung an keiner Stelle die Eigenschaft der Vierervektoren unter LT verwendet wurde, gilt die Relation auch, wenn wir für A den nicht-Vierervektor

\[A = (0, \ldots, 0, 1, 0, \ldots, 0)^T \]

einsetzen, welcher gerade an der ν-ten Stelle eine Eins und sonst nur Nullen hat. Es ist dann:

\[\bar{A}\bar{B} + B\bar{A} = \gamma^\nu \bar{B} + \bar{B}\gamma_\nu \overset{(1)}{=} 2A \cdot B = 2B^\nu \]

Dies ist gerade die Behauptung (für B statt für A). Sei dies (2).

Es ist

\[\gamma^\nu \bar{A} \gamma_\nu \overset{(2)}{=} (2A^\nu - A \gamma^\nu) \gamma_\nu = 2A^\nu \gamma_\nu - A \gamma_\nu \gamma^\nu = A(2 - \gamma \cdot \gamma) \]

Aus der Antikommutatorrelation folgt für $\mu = \nu$:

\[\{\gamma^\mu, \gamma^\nu\} = 2\gamma^\nu \gamma^\nu = 2g^{\nu\nu} \mathbb{1} \]

und damit

\[\gamma \cdot \gamma = \gamma^\nu \gamma_\nu = g_{\nu\nu} \gamma^\nu \gamma_\nu = \sum_\nu \mathbb{1} = 4 \cdot \mathbb{1} \]

Insgesamt ist also die Beziehung (3)

\[\gamma^\nu \bar{A} \gamma_\nu = A(2 - \gamma \cdot \gamma) = A(2 - 4) = -2A \]

Es ist mit Beziehung 2 (und der selben Beziehung für Indizes unten)

\[\gamma^\nu \bar{A} \gamma_\nu = \left(\gamma^\nu \bar{A} \right) \left(\gamma_\nu \bar{B}\right) \overset{(2)}{=} (2A^\nu - A \gamma^\nu) \left(2B_\nu - \gamma_\nu \bar{B}\right) = 4A^\nu B_\nu - 2A^\nu \gamma_\nu \bar{B} - 2A \gamma^\nu B_\nu + A \gamma^\nu \gamma_\nu \bar{B} \]

Wir wissen, dass

\[A^\nu \gamma_\nu = \bar{A} \quad \gamma^\nu B_\nu = \bar{B} \quad \gamma^\nu \gamma_\nu = \gamma \cdot \gamma = 4 \]
und damit die Behauptung (4)

$$\gamma \gamma' \bar{A} \gamma_2 \gamma_1 = 4A \cdot B - 2A \bar{B} - 2 \bar{A} B + 4 \bar{A} \bar{B} = 4A \cdot B$$

26. Aufgabe: Gyromagnetischer Faktor des Protons

Es gibt ein B-Feld, aber kein E-Feld. Für den Feldstärke- und die restlichen Komponenten des
Feldstärketensors in folgender Form schreiben:

$$F^{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & B_z & -B_y \\ 0 & -B_z & 0 & B_x \\ 0 & B_y & -B_x & 0 \end{pmatrix}$$

Da $F^{\mu 0} = F^{0\mu} = 0$ ist, lassen sich die Matrizen $\sigma_{\mu\nu}$ und die restlichen Komponenten des
Feldstärketensors in folgender Form schreiben:

$$\sigma_{\mu\nu} = \epsilon_{ijk} \sigma_k$$

$$F^{\mu\nu} = \epsilon^{ijk} B_k$$

Damit ergibt sich:

$$\sigma_{\mu\nu} F^{\mu\nu} = \epsilon_{ijk} \sigma_k \epsilon^{ijk'} B_k$$

Mit $\epsilon_{ijk} \epsilon^{ijk'} = 2 \delta_{kk'}$ und $\sigma_k = 2 \vec{S}$ folgt hieraus:

$$\sigma_{\mu\nu} F^{\mu\nu} = 4 \vec{S} \cdot \vec{B}$$

Sei Γ der gegebene Term mit $\Gamma = k_p \frac{e}{m_p} \vec{S} \cdot \vec{B}$, dann ist die Dirac-Gleichung

$$\left(i \hbar \frac{\partial}{\partial t} - e\phi + \Gamma\right) \psi = \left(c \alpha \cdot \left(\frac{\hbar}{i} \vec{\nabla} - \frac{q}{c} \vec{A}\right) + \beta mc^2\right) \psi$$

Verglichen dazu gilt beim Elektron:

$$\left(\cdots + \mu_B \cdot (\vec{L} + g_e \vec{S}) \cdot \vec{B}\right) \psi$$

wobei $g_e = 2$ ist. Durch diesen Vergleich ergibt sich, dass $\frac{e}{m_p} = 2 \mu_B$ sein muss. Für den
gyromagnetischen Faktor folgt dann:

$$g_p = 2k_p + 2$$
Der Teil ’+2’ kommt dabei vom Elektron ($g_e = 2$). Der Wert für k_p beträgt:

$$k_p = 1.795$$

8. Übung
Aufgabe 1: Dirac-Gleichung

Betrachten Sie den Dirac-Hamilton-Operator für ein relativistisches Teilchen mit der Masse \(m \), das sich im Zentralpotential \(V(r) \) befindet

\[
H = c\vec{\alpha} \cdot \vec{p} + \beta mc^2 + V(r).
\]

Berechnen Sie die Kommutatoren \([H, \vec{L}]\), \([H, \vec{S}]\) und \([H, \vec{L} + \vec{S}]\), wobei \(\vec{L} = \vec{r} \times \vec{p} \) der Bahndrehimpuls und

\[
\vec{S} = \frac{\hbar}{2} \sum = \frac{\hbar}{2} \begin{pmatrix} \vec{\sigma} & 0 \\ 0 & \vec{\sigma} \end{pmatrix}
\]

der Spinoperator ist. Betrachten Sie dabei die Dirac-Matrizen \(\vec{\alpha} \) und \(\beta \) in der Standarddarstellung.

\(\Psi \) sei eine Lösung der Dirac-Gleichung für ein Teilchen der Masse \(m \) und Ladung \(q \) in einem äußeren elektromagnetischen Feld

\[
[\gamma^\mu (i\partial_\mu - qA_\mu) - m]\Psi = 0.
\]

(a) Welcher Gleichung genügt \(\bar{\Psi} \)?

(b) Zeigen Sie, dass der Dirac-Strom \(j^\mu = \bar{\Psi} \gamma^\mu \Psi \) erhalten ist.

(c) Zeigen Sie, dass die Lösungen der Dirac-Gleichung in Anwesenheit eines elektromagnetischen Feldes folgender Gleichung

\[
[(i\partial_\mu + iqA_\mu)(i\partial^\mu + iqA^\mu) + \frac{1}{2} q\sigma^\lambda F_{\lambda\mu} + m^2]\Psi = 0
\]

genügt, wobei \(F_{\mu\nu} \) der Feldstärke-Tensor ist.

Hinweis: Überzeugen Sie sich davon, dass \((\gamma^0)^\dagger = \gamma^0 \), sowie \((\gamma^k)^\dagger = -\gamma^k \) (\(k = 1, 2, 3 \)) gilt.

(*) Aufgabe 3 (4P): Dirac-Spinoren. Lorentz-Transformationen.

Gegeben sei die Lorentz-Transformation \(\Lambda^\nu_\mu \), die einen Boost in \(j \)-Richtung mit der Rapidität \(\eta \) beschreibt.

(a) Zeigen Sie, dass die Transformationsmatrix \(S(\Lambda) \) der Dirac-Spinoren in folgende Form übergeführt werden kann

\[
S(\Lambda) = \cosh \left(\frac{\eta}{2} \right) - i\sigma_{0j} \sinh \left(\frac{\eta}{2} \right).
\]

(b) Berechnen Sie \(\{\gamma^\nu, \sigma_{0j}\} \).

(c) Zeigen Sie, dass gilt \(S^{-1}(\Lambda) = \gamma^0 S^\dagger(\Lambda) \gamma^0 \).

(d) Zeigen Sie durch explizite Rechnung, dass \(S^{-1}(\Lambda) \gamma^\nu S(\Lambda) = \Lambda^\nu_\mu \gamma^\mu \) erfüllt ist.

Hinweis: Betrachten Sie die Fälle \(0 \neq \nu \neq j, \nu = 0 \) und \(\nu = j \) separat.

Im Aufgabenteil (c) und (d) können Sie eine explizite Darstellung der \(\gamma \)-Matrizen verwenden.

D_z sei die dreidimensionale Drehmatrix für die Drehung um den Winkel ϕ um die z-Achse und S_R die entsprechende Drehung der Spinoren.

(a) Zeigen Sie, dass die Transformationsmatrix S_R in folgender Form geschrieben werden kann

$$S_R = \cos\left(\frac{\phi}{2}\right) + i\sigma_{12}\sin\left(\frac{\phi}{2}\right).$$

(b) Zeigen Sie explizit, dass gilt $S_R^{-1}\gamma_jS_R = (D_z)_{ji}\gamma_i$.

Hilfsmittel: Ein eigenhändig beschriebenes DIN A4 Blatt.
Bringen Sie bitte zur Probeklausur Ihren Studentenausweis mit.
27. Aufgabe: Dirac-Gleichung

Es wird zuerst \([H, \vec{L}]\) berechnet. Hierbei ist nur der erste Term des gegebenen Hamilton-operators für den Kommutator relevant. Es folgt:

\[
[H, \vec{L}] = [c\vec{\alpha}\vec{p}, (\vec{r} \times \vec{p})_i] = c[\alpha_j p_j, \varepsilon_{ilm} r_i p_m] = c\varepsilon_{ilm} \alpha_j [p_j, r_i] p_m = -ihc\varepsilon_{ijm} \alpha_j p_m = -ihc(\vec{\alpha} \times \vec{p})_i
\]

Für den Kommutator \([H, \vec{S}]\) verwenden wir die gegebene Schreibweise

\[
[H, \vec{S}] = \hbar \frac{2}{2}[H, \vec{\Sigma}]
\]

und berechnen hierfür die Kommutatoren der einzelnen Komponenten

\[
[H, \vec{\Sigma}] = [c\vec{\alpha}\vec{p}, \vec{\Sigma}] = [\alpha_j p_j, \Sigma_h] = [\alpha_j, \Sigma_h] p_j
\]

Für \([\beta mc^2, \vec{\Sigma}]\) gilt:

\[
[\beta, \vec{\Sigma}] = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \vec{\sigma} & 0 \\ 0 & \vec{\sigma} \end{pmatrix} - \begin{pmatrix} \vec{\sigma} & 0 \\ 0 & \vec{\sigma} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = 0
\]

Für \([c\vec{\alpha}\vec{p}, \vec{\Sigma}]\) gilt:

Hierbei werden die Komponenten als Matrizen geschrieben, um den Kommutator auszurechnen:

\[
[\alpha_j, \Sigma_k] = \begin{pmatrix} 0 & \sigma_j \\ \sigma_j & 0 \end{pmatrix} \begin{pmatrix} \sigma_k & 0 \\ 0 & \sigma_k \end{pmatrix} = \begin{pmatrix} \sigma_k & 0 \\ 0 & \sigma_k \end{pmatrix} \begin{pmatrix} 0 & \sigma_j \\ \sigma_j & 0 \end{pmatrix} = 2i\varepsilon_{jkm} \begin{pmatrix} 0 & \sigma_m \\ \sigma_m & 0 \end{pmatrix}_{\alpha_m}
\]
Somit ist insgesamt
\[[H, \sum_k] = 2i e \varepsilon_{jkm} \alpha_m p_j = 2i e (\vec{\alpha} \times \vec{p})_k \]
\[[H, \vec{S}] = i \hbar c (\vec{\alpha} \times \vec{p})_i \]
was genau \(-[H, \vec{L}]\) entspricht. Es ist also sofort zu sehen
\[[H, \vec{L} + \vec{S}] = 0 \]

28. **Aufgabe: Stromerhaltung**

(a) Sei \(\psi \) eine Lösung der Dirac-Gleichung:
\[[\gamma^\mu (i \partial_\mu - qA_\mu) - m] \psi = 0 \]
Die Gleichung ist immer noch richtig, wenn wir sie hermitesch konjugieren. Also
\[0 = [\gamma^\nu (i \partial_\mu - qA_\mu) \psi - m \psi]^\dagger \]
Dabei müssen wir beachten, dass
\[\partial_{\mu}^\dagger = \partial_\mu \quad A_{\mu}^\dagger = A_\mu \quad (\gamma^0)^\dagger = \gamma^0 \quad (\gamma^k)^\dagger = -\gamma^k \]
weshalb wir die Summation in \(\mu \) aufspalten. Man erhält also
\[0 = (-i \partial_0 - qA_0) \psi^\dagger \gamma^0 - (-i \partial_j - qA_j) \psi^j \gamma^j - m \psi^\dagger \]
Diese Gleichung multiplizieren wir jetzt von rechts mit \(\gamma^0 \) und erhalten:
\[0 = (-i \partial_0 - qA_0) \psi^\dagger \gamma^0 \gamma^0 - (-i \partial_j - qA_j) \psi^j \gamma^0 \gamma^0 - m \psi^\dagger \gamma^0 \gamma^0 \]
Mit der Definition \(\bar{\psi} = \psi^\dagger \gamma^0 \) erhalten wir dann die Gleichung
\[0 = (-i \partial_0 - qA_0) \bar{\psi} \gamma^0 + (-i \partial_j - qA_j) \bar{\psi} \gamma^j - m \bar{\psi} \]
or umgestellt
\[(i \partial_\mu + qA_\mu) \bar{\psi} \gamma^\mu + m \bar{\psi} = 0 \]
(b) Wir benutzen die normale Dirac-Gleichung und multiplizieren sie von links mit \(\bar{\psi} \):
\[i \bar{\psi} \gamma^\mu (\partial_\mu \psi) - q \bar{\psi} \gamma^\mu A_\mu \psi - m \bar{\psi} \psi = 0 \]
Die Dirac-Gleichung für $\bar{\psi}$ multiplizieren wir von rechts mit ψ:

$$i(\partial_\mu \bar{\psi})\gamma^\mu \psi + qA_\mu \bar{\psi}\gamma^\mu \psi + m\bar{\psi}\psi = 0$$

Nun addieren wir die beiden Gleichungen und erhalten

$$0 = i[\bar{\psi}\gamma^\mu(\partial_\mu \psi) + (\partial_\mu \bar{\psi})\gamma^\mu \psi] = i\delta_\mu(\bar{\psi}\gamma^\mu \psi)$$

und damit die Behauptung

$$\delta_\mu j^\mu = 0$$

dass der Dirac-Strom erhalten ist.

(c) Die Dirac-Gleichung schreiben wir hier als

$$[\gamma^\mu D_\mu - m]\Psi = 0$$

mit

$$D_\mu = i\partial_\mu - qA_\mu$$

Hierbei ist als erstes zur Kenntnis zu nehmen, dass

$$[D_\mu, D_\nu] \neq 0$$

da

$$[\partial_\mu, A_\nu] = \partial_\mu A_\nu - A_\nu \partial_\mu = (\partial_\mu A_\nu)$$

gilt. Jedoch kommutieren die Ableitungen und Potentiale untereinander:

$$[\partial_\mu, \partial_\nu] = 0 \quad [A_\mu, A_\nu] = 0$$

Berechnen wir den Kommutator der D, so erhält man

$$[D_\mu, D_\nu] = iq[\partial_\mu, A_\nu] + iq[A_\mu, \partial_\nu] = iq((\partial_\mu A_\nu) - (\partial_\nu A_\mu)) = iqF_{\mu\nu}$$

Um dieses Ergebnis verwenden zu können, betrachten wir als nächstes ein Produkt von zwei Dirac-Gleichungen:

$$(\gamma^\nu D_\nu - m)(\gamma^\mu D_\mu - m)\Psi = 0$$
Hier wurde verwendet, dass \(m \) der Eigenwert von \(\slashed{D} \) ist. Den ersten Term schreiben wir folgendermaßen um:

\[
\gamma^\nu \gamma^\mu D_\nu D_\mu = \frac{1}{2} (\gamma^\nu \gamma^\mu D_\nu D_\mu + \gamma^\mu \gamma^\nu D_\mu D_\nu) = - \gamma^\nu \gamma^\mu + 2g^\nu\mu
\]

Daraus erhalten wir die gesuchte Gleichung

\[
- \left((\partial_\mu + iqA_\mu)(\partial^\mu + iqA^\mu) + \frac{q}{2} \sigma^{\mu\nu} F_{\mu\nu} + m^2 \right) \Psi = 0
\]

wobei der Term \(\frac{q}{2} \sigma^{\mu\nu} F_{\mu\nu} \) einer zusätzlichen Spin-Feld-Kopplung entspricht, z.B. \(\vec{S} \cdot \vec{B} \)

29. Aufgabe: Dirac-Spinoren, Lorentz-Transformationen

(a) Die allgemeine Drehung ist definiert als

\[
S(\Lambda) = \exp \left(-\frac{i}{4} \omega^{\mu\nu} \sigma_{\mu\nu} \right)
\]

Für einen Boost in \(j \)-Richtung mit Rapidität \(\eta \) ist jetzt \(\omega \) immer null bis auf

\[
\omega^{0j} = -\omega^{j0} = \eta
\]

und damit

\[
\omega^{\mu\nu} \sigma_{\mu\nu} = 2\eta \sigma_{0j} \implies S(\Lambda) = \exp \left(-\frac{i}{2} \eta \sigma_{0j} \right)
\]

Wir zeigen zuerst eine allgemeine Beziehung für \(\mu \neq \nu \)

\[
\sigma_{\mu\nu}^2 = -\frac{1}{4} [\gamma_\mu, \gamma_\nu]^2 = -\frac{1}{4} (\gamma_\mu \gamma_\nu \gamma_\mu \gamma_\nu - \gamma_\mu \gamma_\nu \gamma_\nu \gamma_\mu - \gamma_\nu \gamma_\mu \gamma_\mu \gamma_\nu + \gamma_\nu \gamma_\mu \gamma_\mu \gamma_\mu)
\]

Weiterhin folgt aus \(\{\gamma_\mu, \gamma_\nu\} = 0 \) die Beziehung \(\gamma_\mu \gamma_\nu = -\gamma_\nu \gamma_\mu \) und damit erhält man

\[
\frac{1}{4} (\gamma_\nu \gamma_\mu \gamma_\mu \gamma_\nu + \gamma_\nu \gamma_\mu \gamma_\nu \gamma_\mu + \gamma_\nu \gamma_\mu \gamma_\mu \gamma_\nu + \gamma_\nu \gamma_\mu \gamma_\mu \gamma_\nu) = \gamma_\nu \gamma_\mu \gamma_\mu \gamma_\nu
\]

82
Wir nennen diese Beziehung (1).
Wir benutzen die Reihenentwicklung der Exponentialfunktion.

\[S(\Lambda) = \exp \left(-\frac{i}{2} \eta \sigma_{0j} \right) = \sum_n \left(\frac{-i}{n!} \frac{\eta}{2} \right)^n (\sigma_{0j})^n \]

Wir spalten in gerade und ungerade Terme in \(n \) auf:

\[= \sum_n \frac{(-1)^n}{2n!} \left(\frac{\eta}{2} \right)^{2n} \sigma_{0j}^2 - i \sigma_{0j} \sum_n \frac{(-1)^n}{(2n+1)!} \left(\frac{\eta}{2} \right)^{2n+1} (\sigma_{0j})^n \]

Aus der Beziehung (1) erhalten wir

\[\sigma_{0j}^2 = g_{00} g_{jj} \]

und damit:

\[= \sum_n \frac{(-1)^n}{2n!} \left(\frac{\eta}{2} \right)^{2n} \sigma_{0j} + i \sigma_{0j} \sum_n \frac{(-1)^n}{(2n+1)!} \left(\frac{\eta}{2} \right)^{2n+1} (-1)^n = \cosh \left(\frac{\eta}{2} \right) - i \sigma_{0j} \sinh \left(\frac{\eta}{2} \right) \]

(b) Es ist nach Definition von \(\sigma \):

\[\{ \gamma^\nu, \sigma_{0j} \} = \gamma^\nu \sigma_{0j} + \sigma_{0j} \gamma^\nu = \frac{i}{2} \left(\gamma^\nu \gamma^0 \gamma^j - \gamma^j \gamma^0 \gamma^\nu + \gamma^0 \gamma^j \gamma^\nu - \gamma^j \gamma^0 \gamma^\nu \right) \]

Für \(\mu \neq \nu \) ist \(\gamma^\mu \gamma^\nu = -\gamma^\nu \gamma^\mu \). Wir betrachten drei Fälle:

1. Fall: \(\nu = 0 \)

\[= \frac{i}{2} \left(\gamma^0 \gamma^0 \gamma^j - \gamma^0 \gamma^j \gamma^0 + \gamma^0 \gamma^j \gamma^0 - \gamma^j \gamma^0 \gamma^0 \right) = \frac{i}{2} \left(\gamma^0 \gamma^0 \gamma^j - \gamma^j \gamma^0 \gamma^0 \right) \]

\[= \frac{i}{2} \left(\gamma^0 \gamma^0 \gamma^j - \gamma^0 \gamma^0 \gamma^j \right) = 0 \]

2. Fall: \(\nu = j \)

\[= \frac{i}{2} \left(\gamma^j \gamma^0 \gamma^j - \gamma^j \gamma^0 \gamma^j + \gamma^0 \gamma^j \gamma^j - \gamma^j \gamma^0 \gamma^j \right) = \frac{i}{2} \left(-\gamma^j \gamma^0 \gamma^j + \gamma^0 \gamma^0 \gamma^j \right) = 0 \]

Sonst

\[= \frac{i}{2} \gamma^\nu \left(\gamma^0 \gamma^j - \gamma^j \gamma^0 \gamma^0 \gamma^j - \gamma^j \gamma^0 \gamma^0 \right) = \frac{i}{2} \gamma^\nu \left[\gamma^0, \gamma^j \right] = 2 \gamma^\nu \sigma_{0j} \]

83
Also ist in diesem Fall
\[\gamma^\nu \sigma^{0j} = \sigma^{0j} \gamma^\nu \]
was wir auch schon aufgrund von
\[[\gamma^\nu, \sigma^{0j}] = 0 \]
wissen.

(c) \(S^{-1} \) ergibt sich gerade, wenn man \(\eta \) mit \(-\eta \) ersetzt. Man erhält dann analog zu oben:
\[S^{-1}(\Lambda) = \cosh \left(\frac{\eta}{2} \right) + i \sigma_{0j} \sinh \left(\frac{\eta}{2} \right) \]

Nun bilden wir \(S^\dagger \). Für \(\sigma_{0j} \) gilt
\[\sigma^\dagger_{0j} = \left(i \frac{1}{2} [\gamma_0, \gamma_j] \right)^\dagger = -\frac{i}{2} [\gamma_j, \gamma_0] = -\frac{i}{2} [-\gamma_j, \gamma_0] = -\frac{i}{2} [\gamma_0, \gamma_j] = -\sigma_{0j} \]
und damit
\[(i \sigma_{0j})^\dagger = i \sigma_{0j} \]
Somit erhält man
\[S^\dagger(\Lambda) = S(\Lambda) = \cosh \left(\frac{\eta}{2} \right) - i \sigma_{0j} \sinh \left(\frac{\eta}{2} \right) \]
und damit
\[\gamma^0 S^\dagger \gamma^0 = \gamma^0 \cosh \left(\frac{\eta}{2} \right) \gamma^0 - i \gamma^0 \sigma_{0j} \gamma^0 \sinh \left(\frac{\eta}{2} \right) \]
Wir wissen aus der (b), dass (da die Relation auch für die kontravariante Form gilt):
\[\{ \gamma^0, \sigma_{0j} \} = 0 \implies \gamma^0 \sigma_{0j} = -\sigma_{0j} \gamma^0 \]
Deshalb ist
\[\gamma^0 \sigma_{0j} \gamma^0 = -\gamma^0 \gamma^0 \sigma_{0j} \]
Weiterhin ist einfach
\[\gamma^0 \gamma^0 = 1 \]
und man erhält die Behauptung
\[\gamma^0 S^\dagger \gamma^0 = \cosh \left(\frac{\eta}{2} \right) + i \sigma_{0j} \sinh \left(\frac{\eta}{2} \right) = S^{-1} \]
(d) Mit den beiden Darstellungen von S und S^{-1} von oben erhalten wir:

$$S^{-1}(\Lambda)\gamma^\nu S(\Lambda) = \left[\cosh\left(\frac{\eta}{2}\right) + i\sigma_0j \sinh\left(\frac{\eta}{2}\right) \right] \gamma^\nu \left[\cosh\left(\frac{\eta}{2}\right) - i\sigma_0j \sinh\left(\frac{\eta}{2}\right) \right]$$

$$= \cosh^2\left(\frac{\eta}{2}\right) \gamma^\nu + \sinh^2\left(\frac{\eta}{2}\right) \sigma_0j \gamma^\nu \sigma_0j - i \cosh\left(\frac{\eta}{2}\right) \sinh\left(\frac{\eta}{2}\right) \gamma^\nu \sigma_0j + i \cosh\left(\frac{\eta}{2}\right) \sinh\left(\frac{\eta}{2}\right) \sigma_0j \gamma^\nu$$

Wir benutzen trigonometrische Umformungen und erhalten

$$= \cosh^2\left(\frac{\eta}{2}\right) \gamma^\nu + i \frac{1}{2} \sinh(\eta)[\sigma_0j, \gamma^\nu] + \sinh^2\left(\frac{\eta}{2}\right) \sigma_0j \gamma^\nu \sigma_0j$$

Wir wollen zuerst den Kommutator betrachten. Dieser ist nach Wahl der σ-Matrizen gegeben durch

$$[\sigma_0j, \gamma^\nu] = -[\gamma^\nu, \sigma_0j] = -2i(g^\nu_0 \gamma_j - g^\nu_j \gamma_0)$$

Wieder betrachten wir 3 Fälle:

1. **Fall: $\nu = 0$** : Hier ist nach der Beziehung aus der (b):

 $$\{\sigma_0j, \gamma^\nu\} = 0$$

 und damit

 $$\gamma^\nu \sigma_0j = -\sigma_0j \gamma^\nu$$

 Mit der vorher abgeleiteten Beziehung (1) erhält man

 $$\sigma_0j \sigma_0j = -1$$

 und somit

 $$\sigma_0j \gamma^\nu \sigma_0j = -\gamma^\nu \sigma_0j \sigma_0j = \gamma^\nu$$

 Der Kommutator ist

 $$[\sigma_0j, \gamma^\nu] = -2i\gamma_j$$

 Man erhält dann also mit trigonometrischen Identitäten

 $$S^{-1}(\Lambda)\gamma^0 S(\Lambda) = \cosh^2\left(\frac{\eta}{2}\right) \gamma^0 + \sinh(\eta)\gamma_j + \sinh^2\left(\frac{\eta}{2}\right) \gamma^0$$

 $$= \cosh(\eta)\gamma^0 - \sinh(\eta)\gamma^j = \Lambda^0_\mu \gamma^\mu$$

2. **Fall: $\nu = j$** : Auch hier ist nach der (b)

 $$\gamma^\nu \sigma_0j = -\sigma_0j \gamma^\nu$$
da
\[\{\sigma_0^j, \gamma^\nu\} = 0 \]

Man erhält also wieder
\[\sigma_0^j \gamma^\nu \sigma_0^j = -\gamma^\nu \sigma_0^j \sigma_0^j = \gamma^\nu \]

Diesmal ist der Kommutator
\[[\sigma_0^j, \gamma^\nu] = 2i \gamma_0 \]

und insgesamt erhält man
\[S^{-1}(\Lambda) \gamma^j S(\Lambda) = \cosh^2 \left(\frac{\eta}{2} \right) \gamma^j - \sinh(\eta) \gamma_0 + \sinh^2 \left(\frac{\eta}{2} \right) \gamma^j \]
\[= \cosh(\eta) \gamma^j - \sinh(\eta) \gamma_0 = \Lambda^j_\mu \gamma^\mu \]

Sonst Der Kommutator
\[[\sigma_0^j, \gamma^\nu] = 0 \]
weshalb \(\gamma^\nu \) und \(\sigma_0^j \) vertauschen. Man erhält also
\[\sigma_0^j \gamma^\nu \sigma_0^j = \gamma^\nu \sigma_0^j \sigma_0^j = -\gamma^\nu \]

und damit
\[S^{-1}(\Lambda) \gamma^j S(\Lambda) = \cosh^2 \left(\frac{\eta}{2} \right) \gamma^\nu - \sinh^2 \left(\frac{\eta}{2} \right) \gamma^\nu = \gamma^\nu = \Lambda^\nu_\mu \gamma^\mu \]

Damit ist die Behauptung in allen drei Fällen gezeigt.

30. Aufgabe: Dirac-Spinoren. Räumliche Drehungen

(a) Allgemein ist die Drehung eines Spinors definiert als
\[S(\Lambda) = \exp \left(-\frac{i}{4} \omega^{\mu\nu} \sigma_{\mu\nu} \right) \]

Für die Drehung um die \(z \)-Achse mit Winkel \(\phi \) ergibt sich daraus (siehe Vorlesung)
\[S_R = \exp \left(\frac{i}{2} \phi \sigma_{12} \right) \]
Mit der Beziehung (1) von oben erhält man $\sigma_{12}^2 = 1$ und über die Taylorreihenentwicklung der Exponentialfunktion ist

\[
S_R = \exp \left(\frac{i}{2} \phi \sigma_{12} \right) = \sum_n \frac{\left(\frac{i}{2} \phi \sigma_{12} \right)^n}{n!} = \sum_n (-1)^n \frac{\left(\frac{i}{2} \phi \right)^{2n}}{2n!} (\sigma_{12}^2)^n + i \sum_n (-1)^n \frac{\left(\frac{i}{2} \phi \right)^{2n+1}}{(2n + 1)!} (\sigma_{12}^2)^n \sigma_{12}
\]

\[
= \sum_n (-1)^n \frac{\left(\frac{i}{2} \phi \right)^{2n}}{2n!} 1 + i \sigma_{12} \sum_n (-1)^n \frac{\left(\frac{i}{2} \phi \right)^{2n+1}}{(2n + 1)!} = \cos \left(\frac{\phi}{2} \right) + i \sigma_{12} \sin \left(\frac{\phi}{2} \right)
\]

und damit die Behauptung bewiesen.

(b) Zuerst einmal ist nach Definition

\[
[\gamma_j, \sigma_{12}] = 2i (g_{j1} \gamma_2 - g_{j2} \gamma_1) = -2i (\delta_{j1} \gamma_2 - \delta_{j2} \gamma_1)
\]

da der metrische Tensor für räumliche Koordinaten immer -1 ist.

Die Drehmatrix D_z welche wir erhalten wollen hat die Form

\[
D_z = \begin{pmatrix}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

Es ist (da die inverse Funktion durch Ersetzen von ϕ durch $-\phi$ entsteht)

\[
S_R^{-1} \gamma_j S_R = \left(\cos \left(\frac{\phi}{2} \right) - i \sigma_{12} \sin \left(\frac{\phi}{2} \right) \right) \gamma_j \left(\cos \left(\frac{\phi}{2} \right) + i \sigma_{12} \sin \left(\frac{\phi}{2} \right) \right)
\]

\[
= \cos^2 \left(\frac{\phi}{2} \right) \gamma_j + \sin^2 \left(\frac{\phi}{2} \right) \sigma_{12} \gamma_j \sigma_{12} - i \sin \left(\frac{\phi}{2} \right) \cos \left(\frac{\phi}{2} \right) \sigma_{12} \gamma_j + i \sin \left(\frac{\phi}{2} \right) \cos \left(\frac{\phi}{2} \right) \sigma_{12} \gamma_j \sigma_{12}
\]

und da $\sigma_{12} \sigma_{12} = 1$ und die trigonometrischen Identitäten

\[
\sin^2 \phi + \cos^2 \phi = 1 \quad 2 \sin(x) \cos(x) = \sin(2x) \quad \sin^2(x) = \frac{1}{2}(1 - \cos(2x))
\]

gelten, folgt

\[
= \gamma_j + \frac{1}{2} [(1 - \cos(\phi)) \sigma_{12} + i \sin(\phi)] [\gamma_j, \sigma_{12}]
\]

Wir betrachten die drei Möglichkeiten für j getrennt:
1. **Fall: \(j = 3 \)** Der Kommutator ist Null

\[
[\gamma_3, \sigma_{12}] = 0
\]

und man erhält ganz einfach

\[
S_R^{-1} \gamma_3 S_R = \gamma_3 = (D_Z)_{33} \gamma_3 = (D_Z)_{3i} \gamma_i
\]

2. **Fall: \(j = 2 \)** Der Kommutator ist

\[
[\gamma_2, \sigma_{12}] = 2i \gamma_1
\]

Weiterhin ist

\[
\sigma_{12} \gamma_1 = \frac{i}{2} (\gamma_1 \gamma_2 \gamma_1 - \gamma_2 \gamma_1 \gamma_1) = \frac{i}{2} (\gamma_1 \gamma_2 \gamma_1 + \gamma_1 \gamma_2 \gamma_1)
\]

da der Antikommutator Null ist. Und dann

\[
= -i \gamma_1 \gamma_1 \gamma_2 = -\frac{i}{2} \{\gamma_1, \gamma_1\} \gamma_2 = -i g_{11} \gamma_2 = i \gamma_2 \implies \sigma_{12}[\gamma_2, \sigma_{12}] = -2 \gamma_2
\]

Man erhält also

\[
S_R^{-1} \gamma_2 S_R = \gamma_2 - (1 - \cos \phi) \gamma_2 - \sin(\phi) \gamma_1 = \cos(\phi) \gamma_2 - \sin(\phi) \gamma_1 = (D_Z)_{2i} \gamma_i
\]

3. **Fall: \(j = 1 \)** Diesmal ist der Kommutator

\[
[\gamma_1, \sigma_{12}] = -2i \gamma_2
\]

und analog zu oben erhält man

\[
\sigma_{12} \gamma_2 = -i \gamma_1 \implies \sigma_{12}[\gamma_1, \sigma_{12}] = -2 \gamma_1
\]

Also

\[
S_R^{-1} \gamma_2 S_R = \gamma_1 - (1 - \cos \phi) \gamma_1 + \sin(\phi) \gamma_2 = \cos(\phi) \gamma_1 + \sin(\phi) \gamma_2 = (D_Z)_{1i} \gamma_i
\]

9. **Übung**
(*) Aufgabe 1 (2P) : Bilineare Kovarianten
Zeigen Sie, dass \(\Psi \gamma_5 \Psi \) ein Pseudoskalar unter Lorentz-Transformation ist, d.h. dass gilt
\[
\Psi(x') \gamma_5 \Psi(x') = \det(\Lambda) \Psi(x) \gamma_5 \Psi(x).
\]

(*) Aufgabe 2 (2P) : Lösungen der freien Dirac-Gleichung
Betrachten Sie die Lösungen \(u^{(1)}(p) \) und \(u^{(2)}(p) \) (vgl. Vorlesung) der freien Dirac-Gleichung zum Impuls \(p^\mu \). Bilden Sie daraus eine Linearkombination, die eine Eigenfunktion von \(\Sigma(x) \) (vgl. Aufgabe 1 von Übungsblatt 8) ist. In welche Richtung zeigt der Impuls dieser Lösung?

(*) Aufgabe 3 (2P) : Nicht-relativistischer Limes für bilineare Kovarianten
Bestimmen Sie das führende Verhalten in \(v/c \) der bilinearen Kovarianten \(\bar{u} \Gamma u \) (mit \(\Gamma \in \{1, \gamma^\mu, \sigma^{\mu\nu}, \gamma^5, \gamma^\mu \gamma^5\} \)), wobei \(u \) eine Lösung der freien Dirac-Gleichung zum Impuls \(p^\mu \) ist. Hinweis: Beachten Sie, dass die beiden unteren Komponenten von \(u \) von der Ordnung \(v/c \) relativ zu den oberen sind.

(*) Aufgabe 4 (4P) : Projektoren für Energie und Spin
(a) Berechnen Sie die Kommutatoren
\[
[\Lambda_\pm(p), \Sigma(s)],
\]
worin \(\Lambda_\pm(p) = \frac{\pm p^\mu + m}{2m} \) und \(\Sigma(s) = \frac{1 + \gamma^\mu}{2} \) den Energie-bzw. Spinproyektor bezeichnet. \(s^\mu \) ist der Polarisations-Vierervektor und \(p^\mu \) der Viererimpuls.
(b) Zerlegen Sie \(s^\mu \) in \(\xi p^\mu + \eta g^\mu_0 \), indem Sie \(s^2 = -1 \) und \(s \cdot p = 0 \) benutzen. Gegen welchen Ausdruck strebt \(s^\mu \) für \(p^\mu \to \infty \)?
(c) Berechnen Sie \(\Lambda_+ \Sigma(s) \) für \(p^\mu \to \infty \).
(d) Zeigen Sie, dass für freie Elektron-Wellenfunktionen mit Polarisations-Vierervektor \(s^\mu \) und Viererimpuls \(p^\mu \) gilt
\[
u_\alpha(p,s)\pi_\beta(p,s) = (\Lambda_+(p))_{\alpha\delta}(\Sigma(s))_{\delta\beta}.
\]

Aufgabe 5 : Vollständigkeitsrelation
Zeigen Sie, dass für freie Elektron-Wellenfunktionen mit Viererimpuls \(p^\mu \) die Vollständigkeitsrelation
\[
\sum_{r=1}^{2} u^{(r)}(p)\pi^{(r)}_\beta - \sum_{r=1}^{2} v^{(r)}(p)\pi^{(r)}_\beta = \mathbb{1}_{\alpha\beta}
\]
unabhängig von der speziellen Darstellung gilt.

Inzwischen ist die Anmeldung zu den Vorleistungen in QISPOS frei geschalten. Sie können sich über das Studierendenportal anmelden.
31. Aufgabe: Bilineare Kovarianten

Sei $S(\Lambda)$ die Transformationsmatrix (für eigentliche und uneigentliche Transformationen). Wir verzichten hier auf die Unterscheidung von S und P mit

$$\psi' = S\psi$$

Dann gilt auch

$$\bar{\psi}' = \psi'^\dagger \gamma^0 = (S\psi)^\dagger \gamma^0 = \psi^\dagger S^\dagger \gamma^0 = \psi^\dagger \gamma^0 \gamma^0 S^\dagger \gamma^0$$

Nun gilt laut Vorlesung für alle Transformationen (egal ob eigentlich oder uneigentlich)

$$S^{-1} = \gamma^0 S^\dagger \gamma^0$$

und damit

$$\bar{\psi}' = \psi^\dagger \gamma^0 \gamma^0 S^\dagger \gamma^0 = \psi^\dagger \gamma^0 S^{-1} = \bar{\psi}S^{-1}$$

Setzen wir dies ein erhalten wir:

$$\bar{\psi}' \gamma^5 \psi' = \bar{\psi}S^{-1} \gamma^5 S\psi$$

Wir unterscheiden die beiden Fälle:

Eigentliche LT: Da $[\sigma^\mu\nu, \gamma^5] = 0$ und

$$S = \exp \left(-\frac{i}{4} \omega_{\mu\nu} I^\mu_{\nu} \right)$$

ist auch

$$[S, \gamma^5] = 0 \implies S\gamma^5 = \gamma^5 S$$

Deswegen ist

$$\bar{\psi}' \gamma^5 \psi' = \bar{\psi}S^{-1} \gamma^5 S\psi = \bar{\psi} \underbrace{S^{-1} S \gamma^5}_{=1} \psi = \bar{\psi} \gamma^5 \psi$$

Und da bei einer eigentlichen LT $\det(\Lambda) = 1$ ist

$$\bar{\psi}' \gamma^5 \psi' = \det(\Lambda) \bar{\psi} \gamma^5 \psi$$

Uneigentliche LT: Hier ist

$$\{S, \gamma^5\} = 0 \implies S\gamma^5 = -\gamma^5 S$$

91
da
\[S = e^{i \varphi \gamma^0} \]
und \(\{ \gamma^0, \gamma^5 \} = 0 \). Es ist deshalb
\[\bar{\psi}' \gamma^5 \psi' = \bar{\psi} S^{-1} \gamma^5 S \psi = -\bar{\psi} S^{-1} \gamma^5 \psi = -\bar{\psi} \gamma^5 \psi \]
und da für eine uneigentliche LT \(\det(\Lambda) = -1 \) nach Definition, erhält man auch hier die Behauptung
\[\bar{\psi}' \gamma^5 \psi' = -\bar{\psi} \gamma^5 \psi = \det(\Lambda) \bar{\psi} \gamma^5 \psi \]

32. Aufgabe: Lösungen der freien Dirac-Gleichung

Wir betrachten
\[u^{(1)}(p) = N \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} \sigma_x \\ 0 \end{pmatrix} \]
\[u^{(2)}(p) = N \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} \sigma_x \\ 0 \end{pmatrix} \]
nach Blatt 8 ist
\[\Sigma_x = \begin{pmatrix} \sigma & 0 \\ 0 & -\sigma \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \]

Dieser Operator hat die zwei Eigenwerte 1 und -1 mit den Eigenvektoren
\[w_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \quad w_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \]
\[v_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} \quad v_2 = \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} \]

Die möglichen Ansätze sind dann
\[u_L^1(p) = u^{(1)}(p) + u^{(2)}(p) \quad u_L^2(p) = u^{(1)}(p) - u^{(2)}(p) \]
mit den Eigenwerten 1 und -1. Wir testen jetzt diese Ansätze:

\[
\Sigma_x u^1_L(p) = N \begin{pmatrix} \sigma_x \left(\begin{array}{c} 1 \\ 1 \\ \sigma_x \frac{\vec{p} \vec{\sigma}}{p_0 + m} \end{array} \right) \end{pmatrix}
\]

Damit dies ein Eigenvektor ist, muss dies wieder \(u^1_L \) sein. Dies ist nur erfüllt für

\[
\sigma_x \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\]

was sowieso schon erfüllt ist und

\[
\sigma_x \frac{\vec{p} \vec{\sigma}}{p_0 + m} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{\vec{p} \vec{\sigma}}{p_0 + m} \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\]

was auf

\[
\sigma_x \frac{p_i \sigma_i}{p_0 + m} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 2 \varepsilon_{xij} \sigma_j p_i \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\]

führt. Dabei muss \(p_y = p_z = 0 \) sein, damit der hintere Term verschwindet. Der Impuls muss also in \(x \)-Richtung zeigen.

33. Aufgabe: Nicht-relativistischer Limes für bilineare Kovarianten

Schreibt man \(u^{(1)} \) aus, so erhält man

\[
u^{(1)} = \frac{p_0 + m}{2m} \begin{pmatrix} 1 & 0 \\ \frac{p_x}{p_0 + m} & \frac{p_x}{p_0 + m} \end{pmatrix}
\]

und für \(u^{(2)} \) analog. Damit ist

\[
v^{(1)} = \frac{p_0 + m}{2m} \begin{pmatrix} 1 & 0 & -\frac{p_x}{p_0 + m} & -\frac{p_x}{p_0 + m} \end{pmatrix}
\]

Für eine allgemeine Matrix

\[
\Lambda = \begin{pmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{21} & \Lambda_{22} \end{pmatrix}
\]
ist
\[\bar{u}\Lambda u = N^2 \left[\begin{pmatrix} 1 & 0 \end{pmatrix} \Lambda_{11} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \end{pmatrix} \Lambda_{12} \begin{pmatrix} \frac{p_z}{p_0 + m} \\ \frac{p_z + ip_y}{p_0 + m} \end{pmatrix} \right. \]
\[+ \left. \begin{pmatrix} - \frac{p_z}{p_0 + m} & -\frac{p_z + ip_y}{p_0 + m} \end{pmatrix} \Lambda_{21} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} - \frac{p_z}{p_0 + m} & -\frac{p_z + ip_y}{p_0 + m} \end{pmatrix} \Lambda_{22} \begin{pmatrix} \frac{p_z}{p_0 + m} \\ \frac{p_z + ip_y}{p_0 + m} \end{pmatrix} \right]\]

Dann setzt man die verschiedenen Matrizen für die \(\Lambda\) einfach ein und erhält (für \(u_2\) analog):
\[
\Lambda = 1
\]
\[\bar{u}_1 \Gamma u = \bar{u}_1 u_1 = 1\]
aufgrund der Normierung.

\[
\Lambda = \gamma_0
\]
\[\bar{u}_1 \gamma^0 u_1 = \frac{p_0 + m}{2m} \left(1 + \frac{p_z^2 + p_y^2 + p_y^2}{(p_0 + m)^2} \right) = \frac{p_0}{m} = \sqrt{1 - \frac{\vec{p}^2}{m^2}} \approx 1 + 1 \frac{v^2}{2} + \ldots\]
mit \(p_0^2 = m^2 + \vec{p}^2\).

\[
\Lambda = \gamma^i \text{ Funktioniert alles sehr analog, nur mit einem Haufen Rechenaufwand, weil explizit für jedes } i \text{ gerechnet werden muss. Man erhält}
\]
\[\bar{u} \gamma_i u = \frac{p_i}{m} = v_i\]

Gebra bla bla. Was für ein Kampfrechnen.

34. Aufgabe: Projektoren für Energie und Spin

(a) Wir berechnen den Kommutator mit den eingesetzten Definitionen:
\[
4m[\Lambda_{\pm}(p), \Sigma(s)] = (\pm p + m)(1 + \gamma^5) - (1 + \gamma^5)(\pm p + m)
\]
\[= \pm p \gamma^\mu + p \gamma^\mu s \gamma^5 \gamma^\nu + m + ms \gamma^5 \gamma^\mu + p \gamma^\mu - m \mp p s \gamma^5 \gamma^\mu - m s \gamma^5 \gamma^\mu
\]
\[= \pm p s \gamma^5 \gamma^\mu + p s \gamma^5 \gamma^\mu = \pm p s \left(-\gamma^5 \gamma^\mu \gamma^\nu - \gamma_5 \gamma^\mu \gamma^\nu \right) = \mp p s \gamma^5 \{ \gamma^\mu, \gamma^\nu \}
\]
\[= \mp 2 p s \gamma^5 \gamma^\mu \gamma^\nu = \mp 2 p s \gamma^5 = \mp 2 (p \cdot s) \gamma^5 = 0
\]
da \(p \cdot s = 0\) in jedem IS gilt. Also vertauschen \(\Sigma(s)\) und \(\Lambda_{\pm}(p)\).
Wir setzen für \(s^\mu \) die Definition ein:

\[
 s^\mu = \xi p^\mu + \eta g^\mu_0
\]

und erhalten die beiden Beziehungen:

\[
 -1 = s^\mu s_\mu = \xi^2 p^\mu p_\mu + \xi \eta p_\mu g^\mu_0 + \xi \eta p_\mu g_\mu^0 + \eta^2 g^\mu_0 g_\mu^0 = \xi^2 m^2 + 2 \xi \eta p^0 + \eta^2
\]
da \(p \cdot p = m^2 \) und \((g^{00})^2 = 1\). Und

\[
 0 = s^\mu p_\mu = \xi p^\mu p_\mu + \eta g^\mu_0 p_\mu = \xi m^2 + \eta p^0
\]

Aus der letzteren Gleichung folgt direkt

\[
 \xi = -\frac{\eta^0}{m^2}
\]

Und das in die erste Gleichung eingesetzt liefert

\[
 -1 = \eta^2 (p^0)^2 - \frac{2 \eta^2 (p^0)^2}{m^2} + \eta^2
\]

und damit dann

\[
 \eta^2 = \frac{m^2}{(p^0)^2 - m^2} = \frac{m^2}{(p^0)^2 - (p^0)^2 + p^2} \implies \eta = \pm \frac{m}{\sqrt{p^2}} = \pm \frac{m}{|p|}
\]

Insgesamt erhält man also die Beziehung

\[
 s^\mu = \xi p^\mu + \eta g^\mu_0 = \frac{p^0 p^\mu}{m |p|} \pm \frac{m}{|p|} g^\mu_0
\]

Wir nehmen an, dass die Aufgabe so gemeint war, dass alle \(p^\mu \) gleichzeitig gegen Unendlich streben (dass wir also den hyperrelativistischen Grenzfall betrachten). In diesem Grenzfall geht

\[
 \frac{(p^0)^2}{|p|^2} \rightarrow 1 \implies \frac{m}{|p|} = \sqrt{\frac{(p^0)^2}{|p|^2} - \frac{|\vec{p}|^2}{|p|^2}} \rightarrow 0
\]

und

\[
 \frac{p^0}{|\vec{p}|} \rightarrow 1
\]
Also ist

\[s^\mu \to \pm \frac{p^\mu}{m} \]

Der Spin im hyperrelativistischen Grenzfall zeigt also immer in Bewegungsrichtung.

(c) Wir setzen also jetzt

\[s^\mu = \frac{p^\mu}{m} \]

Dann ist

\[\Lambda_+ \Sigma(s) = \frac{\not{p} + m + \gamma_5 \not{p}}{2m} - \frac{2}{2m} = \frac{\not{p} + m + \gamma_5 \not{p}}{4m} \]

\[= \frac{(\not{p} + m)(1 - \gamma_5)}{4m} \]

Dabei wurde \(\not{p}^2 = p^2 = m^2 \) benutzt.

(d) OBdA können wir \(u \) als \(u^{(1)} \) so wählen, dass

\[\Sigma(s)u = \Sigma(s)u^{(1)} = u^{(1)} \quad \Sigma(s)u^{(2)} = 0 \]

(analog könnte man auch wählen \(\Sigma(-s)u = \Sigma(-s)u^{(2)} = u^{(2)}; \Sigma(-s)u^{(1)} = 0 \)). Dann ist auch

\[(u^{(1)})^{\dagger} \Sigma^{\dagger}(s) = (u^{(1)})^{\dagger} \]

Man erhält also

\[u^{(1)}_\alpha \bar{u}^{(1)}_\beta = \Sigma_\alpha \gamma_\gamma u^{(1)}_\gamma \bar{u}^{(1)}_\rho \Sigma_\rho \beta = \sum_\nu \Sigma_\alpha \gamma_\gamma u^{(\nu)}_\gamma \bar{u}^{(\nu)}_\rho \Sigma_\rho \beta = (\Sigma(s)\Lambda_+ \Sigma(s))_{\alpha\beta} \]

und damit die Behauptung da wir vertauschen dürfen.

35. Aufgabe: Vollständigkeitsrelation

Wir wechseln zuerst ins Ruhe-System. Von dort benutzen wir \(S \), um auf ein beliebiges System zu wechseln. Aus der Dirac-Gleichung wissen wir sofort, dass

\[u\bar{u}(\not{p} - m) = 0 \]

Im Ruhe-System erhalten wir also

\[u\bar{u}(\gamma^0 m - m) = 0 \implies uu^\dagger \gamma^0 = uu^\dagger = u\bar{u} \]
Im Ruhesystem erhält man durch einfaches Einsetzen:

\[
\sum_{r=1}^{2} u^{(r)}(0)(u^{(r)})\dagger(0) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
\]

Analog ist im Ruhesystem

\[
v\bar{\nu} = -\nu\dagger \quad \sum_{r=1}^{2} v^{(r)}(0)(v^{(r)})\dagger(0) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
\]

Dann ist für ein allgemeines System:

\[
\sum_{r=1}^{2} u^{(r)}_\alpha(p)u^{(r)}_\beta(p) - v^{(r)}_\alpha(p)v^{(r)}_\beta(p) = \left[S(\Lambda) \left(\sum_{r=1}^{2} u^{(r)}(0)\bar{u}^{(r)}(0) - v^{(r)}(0)\bar{v}^{(r)}(0) \right) S^{-1}(\Lambda) \right]_{\alpha\beta}
\]

\[
= \mathbb{1}_{\alpha\beta}
\]

10. Übung
Moderne Theoretische Physik II (Quantenmechanik II)
Institut für Theoretische Teilchenphysik
Prof. Dr. M. Steinhauser, Dr. L. Mihaila
http://www-ttp.particle.uni-karlsruhe.de/~luminita/TheoE1213

Aufgabe 1: Gordon-Zerlegung
Gegeben seien die Spinoren \(u(p_i) \) und \(\pi(p_f) \), die die Dirac-Gleichungen \((p_i - m)u(p_i) = 0\) und \(\pi(p_f)(\not{p}_f - m) = 0\) erfüllen. Zeigen Sie, dass es gilt

\[
\pi(p_f)\gamma^\mu u(p_i) = \pi(p_f)\left[\frac{(p_i + p_f)^\mu}{2m} + \frac{i\sigma^{\mu\nu}(p_f - p_i)_\nu}{2m}\right]u(p_i),
\]

wobei \(\sigma^{\mu\nu} = \frac{i}{2}[\gamma^\mu, \gamma^\nu]\).

Hinweise:
(i) Überzeugen Sie sich davon, dass \(\gamma^\mu\gamma^\nu = g^{\mu\nu} - i\sigma^{\mu\nu}\).
(ii) Verwenden Sie die oben angegebenen Dirac-Gleichungen im Impulsraum.

\[\]

(*) Aufgabe 2 (3P): Spuren mit \(\gamma\)-Matrizen
Zeigen Sie, dass gilt

(a) \(\text{Tr}(\gamma_5) = 0\),
(b) \(\text{Tr}(\gamma^\mu\gamma^\nu) = 4g^{\mu\nu}\),
(c) \(\text{Tr}(\gamma^\mu\gamma^\nu\gamma^\rho\gamma^\delta) = 4(g^{\mu\nu}g^{\rho\delta} - g^{\mu\rho}g^{\nu\delta} + g^{\mu\delta}g^{\nu\rho})\),
(d) \(\text{Tr}(\gamma^\mu\gamma^\nu\gamma^\rho\gamma^\delta\gamma_5) = -4ie^{\mu\nu\rho\sigma}\).

Hinweis: Verwenden Sie die zyklischen Vertauschbarkeit unter der Spur, d.h. \(\text{Tr}(AB) = \text{Tr}(BA)\), und die Anti-Kommutator-Algebra der \(\gamma\)-Matrizen \(\{\gamma^\mu, \gamma^\nu\} = 2g^{\mu\nu}\).

\[\]

(*) Aufgabe 3 (7P) : \(e^+e^- \rightarrow \mu^+\mu^-\)
Die Elektron-Positron-Paarvernichtung in einem Muon-Anti-Muon-Paar \(e^-(p_1)e^+(p_2) \rightarrow \mu^-(k_1)\mu^+(k_2)\) wird durch das folgende Spinor-Matrixelement beschrieben

\[
\mathcal{M} = \frac{e^2}{q^2} \left(\pi(p_2)\gamma^\mu u(p_1)\right)\left(\pi(k_1)\gamma_\mu v(k_2)\right), \quad \text{mit} \quad q = p_1 + p_2 = k_1 + k_2,
\]

wobei \(p_1, p_2\) und \(k_1, k_2\) die Viererimpulse des Elektrons/Positrons bzw. Muons/Anti-Muons bezeichnen.

(a) Zeigen Sie dass gilt

\[
\frac{1}{2} \sum_{s_1} \frac{1}{2} \sum_{s_2} \sum_{s_1} \sum_{s_2} |\mathcal{M}(s_1, s_2 \rightarrow r_1, r_2)|^2
= \frac{1}{2} \sum_{s_1} \sum_{s_2} \sum_{s_1} \sum_{s_2} \sum_{r_1} \frac{e^4}{q^4} \left(\pi(p_2)\gamma^\mu u(p_1)\pi(p_1)\gamma^\nu v(p_2)\right)\left(\pi(k_1)\gamma_\mu v(k_2)\pi(k_2)\gamma_\nu u(k_1)\right),
\]

wobei \(s_1, s_2, r_1, r_2\) die Spinquantenzahlen der Teilchen bezeichnen.

(b) Berechnen Sie \(\frac{1}{2} \sum_{\text{spins}} |\mathcal{M}(s_1, s_2 \rightarrow r_1, r_2)|^2\). Drücken Sie das Resultat als Funktion der Skalarprodukte \(p_1 \cdot p_2, p_1 \cdot k_1, p_2 \cdot k_2, p_1 \cdot k_2, p_2 \cdot k_1\) und Massen der Teilchen aus.
(c) Vernachlässigen Sie nun die Elektron- und Positronmasse und drücken Sie das Resultat von Aufgabenteil (b) als Funktion von der Muonmasse m_μ, seiner Energie und Streuwinkel bzgl. der Elektronrichtung im Schwerpunktsystem aus.

Die Anmeldung zu den Vorleistungen in QISPOS ist frei geschalten (PO2008 und PO2010). Sie können sich über das Studierendenportal anmelden.
36. Aufgabe: Gordon-Zerlegung

Als erstes wird die im Hinweis gegebene Formel nachgeprüft:

\[g^\mu\nu - i\sigma^\mu\nu = \frac{1}{2} \{\gamma^\mu, \gamma^\nu\} - i\frac{1}{2} [\gamma^\mu, \gamma^\nu] = \gamma^\mu \gamma^\nu \]

Um zu zeigen, dass die gegebene Gleichung stimmt, formt man die rechte Seite der Gleichung zur linken um. In diesem Teil ersetzt man \(i\sigma^\mu\nu \) mit Hilfe der Formel aus dem Hinweis und erhält nach ausmultiplizieren

\[\tilde{u}(p_f) \left[\frac{(p_i + p_f)^\mu}{2m} + \frac{i\sigma^\mu\nu(p_f - p_i)_\nu}{2m} \right] u(p_i) = \tilde{u}(p_f) \left[\frac{(p_i + p_f)^\mu}{2m} + \frac{(g^\mu\nu - \gamma^\mu\gamma^\nu)(p_f - p_i)_\nu}{2m} \right] u(p_i) \]

Hierbei wirkt \(\gamma^\nu p_i,\nu \) auf \(u(p_i) \), was unter Anwendung der Dirac-Gleichung auf

\[\gamma^\nu p_i,\nu = m \]

führt. Die Gleichung lässt sich also weiter zusammenfassen zu

\[\tilde{u}(p_f) \left[\frac{p_f^\mu}{m} + \frac{\gamma^\mu}{2} - \frac{\gamma^\mu \gamma^\nu p_{f,\nu}}{2m} \right] u(p_i) \]

\[= \tilde{u}(p_f) \left[\frac{p_f^\mu}{m} + \frac{\gamma^\mu}{2} - \frac{(2g^\mu\nu - \gamma^\mu\gamma^\nu)p_{f,\nu}}{2m} \right] u(p_i) \]

Analog zu eben kann man unter Verwendung der Dirac-Gleichung \(\gamma^\nu p_{f,\nu} = m \) setzen, welches zum Ergebnis führt

\[= \tilde{u}(p_f) \gamma^\mu u(p_i) \]

37. Aufgabe: Spuren mit \(\gamma \)-Matrizen

(a) Es ist nach Definition

\[\text{Tr}(\gamma_5) = \text{Tr}(i\gamma_0\gamma_1\gamma_2\gamma_3) \]

Wir benutzen die Linearität und die zyklische Vertauschbarkeit der Spur und erhalten

\[= i\text{Tr}(\gamma_3\gamma_0\gamma_1\gamma_2) \]
γ_3 antikommutiert mit allen anderen γ-Matrizen, da
\[
\{\gamma^\mu, \gamma^\nu\} = 2g^{\mu\nu}
\]
Vertauschen wir also γ_3 bis an das Ende zurück, so erhalten wir 3 Minuszeichen, also insgesamt
\[
\text{Tr}(\gamma_5) = i\text{Tr}(\gamma_3\gamma_0\gamma_1\gamma_2) = -iTr(\gamma_0\gamma_1\gamma_2\gamma_3) = -\text{Tr}(\gamma_5)
\]
Deshalb muss
\[
\text{Tr}(\gamma_5) = 0
\]
gelten.

(b) Es ist mit der Antikommutatorrelation
\[
\text{Tr}(\gamma^\mu\gamma^\nu) = \text{Tr}(2g^{\mu\nu} - \gamma^\nu\gamma^\mu) = 2\text{Tr}(g^{\mu\nu}) - \text{Tr}(\gamma^\nu\gamma^\mu)
\]
Wieder benutzen wir die zyklische Vertauschbarkeit und erhalten
\[
\text{Tr}(\gamma^\mu\gamma^\nu) = 2\text{Tr}(g^{\mu\nu}) - \text{Tr}(\gamma^\nu\gamma^\mu)
\]
und damit umgestellt
\[
2\text{Tr}(\gamma^\mu\gamma^\nu) = 2\text{Tr}(g^{\mu\nu}) \implies \text{Tr}(\gamma^\mu\gamma^\nu) = \text{Tr}(g^{\mu\nu}) = g^{\mu\nu}\text{Tr}(\mathbb{1}) = 4g^{\mu\nu}
\]
und damit die Behauptung.

(c) Wir benutzen zuerst die zyklische Vertauschbarkeit der Spur
\[
2\text{Tr}(\gamma^\mu\gamma^\nu\gamma^\rho\gamma^\delta) = \text{Tr}(\gamma^\mu\gamma^\nu\gamma^\rho\gamma^\delta + \gamma^\nu\gamma^\rho\gamma^\delta\gamma^\mu)
\]
Jetzt fügen wir eine Null ein und benutzen die Antikommutatorrelationen. Wir schreiben μ statt γ^μ usw. zur Abkürzung.
\[
2\text{Tr}(\mu\nu\rho\delta) = \text{Tr}(\nu\mu\rho\delta + \nu\mu\rho\delta - \nu\mu\rho\delta + \nu\mu\rho\delta + \nu\rho\mu\delta + \nu\rho\delta\mu)
\]
\[
= 2\text{Tr}(g^{\mu\nu}\gamma^\rho\gamma^\delta) - 2\text{Tr}(\gamma^\nu g^{\mu\rho}\gamma^\delta) + 2\text{Tr}(\gamma^\nu\gamma^\rho g^{\mu\delta})
\]
\[
\overset{(b)}{=} 8g^{\mu\nu}g^{\rho\delta} - 8g^{\mu\rho}g^{\nu\delta} + 8g^{\mu\delta}g^{\nu\rho}
\]
und damit die Behauptung.

(d) Wir nehmen zuerst einmal an, zwei Indizes wären gleich. OBdA sei μ einer davon
(für alle anderen Fälle geht der Beweis analog). Aufgrund der zyklischen Vertauschbarkeit kann γ^μ nach ganz hinten getauscht werden. γ^μ antikommutiert dann mit allen anderen γ-Matrizen und mit γ^5, aber nicht mit der, welche den selben Index hat. Es ergeben sich also drei Minuszeichen, also insgesamt

$$\text{Tr}(\gamma^\mu \gamma^\nu \gamma^\rho \gamma^5) = -\text{Tr}(\gamma^\mu \gamma^\nu \gamma^\rho \gamma^5)$$

und damit ist die Spur Null. Sind sogar vier Indizes gleich, so ergibt sich ebenfalls das Ergebnis Null durch zweifaches Vertauschen. Wenn nun aber alle Indizes unterschiedlich sind, so kann man schreiben:

$$\text{Tr}(\gamma^\mu \gamma^\nu \gamma^\rho \gamma^5) = -\text{Tr}(\gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^\mu \gamma^\nu \gamma^\rho \gamma^5) = -i \varepsilon^{\mu\nu\rho\delta} \text{Tr}(1) = -4i \varepsilon^{\mu\nu\rho\delta}$$

was zu zeigen war.

38. Aufgabe: Elektron-Positron-Paarvernichtung

Das Spinor-Matrixelement für den Übergang lautet:

$$\mathcal{M} = \frac{e^2}{q^2} (\bar{v}(p_2) \gamma^\mu u(p_1)) (\bar{u}(k_1) \gamma_\mu v(k_2))$$

Mit $q = p_1 + p_2 = k_1 + k_2$

(a) Mit $|\mathcal{M}|^2 = \mathcal{M} \mathcal{M}^\dagger$ erhält man

$$\frac{1}{4} \sum \frac{e^4}{q^4} [(\bar{v}(p_2) \gamma^\mu u(p_1)) (\bar{u}(k_1) \gamma_\mu v(k_2))] [(\bar{v}(p_2) \gamma^\nu u(p_1)) (\bar{u}(k_1) \gamma_\nu v(k_2))]^\dagger$$

$$= \frac{1}{4} \sum \frac{e^4}{q^4} (\bar{v}(p_2) \gamma^\mu u(p_1)) (\bar{u}(k_1) \gamma_\mu v(k_2)) (\bar{v}(k_2) \gamma^\nu u(k_1)) (\bar{u}(p_1) \gamma^\nu \bar{v}(p_2))$$

Wir verwenden nun die folgenden Relationen

$$\gamma^0 \dagger = \gamma^0 \quad \gamma^i \dagger = -\gamma^i \quad \{\gamma^\mu, \gamma^\nu\} = 2g^{\mu\nu} \quad \bar{u} \gamma^0 = u^\dagger \quad \bar{u}^\dagger = \gamma^0 u$$
Wir schreiben das Ergebnis aus a) um, indem wir Spinorindizes einführen:

\[
\frac{1}{4} \sum \frac{e^4}{q^4} \left(\bar{u}(p_2) \gamma^\mu u(p_1) \right) \left(\bar{u}(k_1) \gamma_\mu v(k_2) \right) \left(\bar{v}(k_2) \gamma^0 \gamma^\nu \gamma^0 u(k_1) \right) \left(\bar{u}(p_1) \gamma^0 \gamma^\nu \gamma^0 v(p_2) \right)
\]

\[
= \frac{1}{4} \sum \frac{e^4}{q^4} \left(\bar{u}(p_2) \gamma^\mu u(p_1) \right) \left(\bar{u}(k_1) \gamma_\mu v(k_2) \right) \left(\bar{v}(k_2) \gamma^0 \gamma^\nu u(k_1) \right) \left(\bar{u}(p_1) \gamma^0 \gamma^0 v(p_2) \right)
\]

\[
= \frac{1}{4} \sum \frac{e^4}{q^4} \left(\bar{u}(p_2) \gamma^\mu u(p_1) \right) \left(\bar{u}(k_1) \gamma_\mu v(k_2) \right) \left(\bar{v}(k_2) \gamma^\nu u(k_1) \right) \left(\bar{u}(p_1) \gamma^\nu v(p_2) \right)
\]

Da das Elektron-System und das Myon-System unterschiedlich sind (beide getrennt scharf messbar) und die Vertauschbarkeit zwischen zwei Systemen gilt, erhält man die Behauptung auf dem Blatt. In der zweiten Zeile wurde benutzt, dass

\[
\gamma^\nu \gamma^0 = \gamma^0 \gamma^\nu
\]

da entweder \(\nu = 0 \) ist und damit die weder beim Vertauschen, noch beim hermitesch konjugieren ein Vorzeichen entsteht oder \(\nu \neq 0 \) und damit in beiden Fällen ein Vorzeichen hinzukommt.

(b) Wir schreiben das Ergebnis aus a) um, indem wir Spinorindizes einführen:

\[
\frac{1}{4} \sum \frac{e^4}{q^4} \left(\bar{u}_\alpha(p_2) \gamma^{\mu}_{\alpha \beta} u_\beta(p_1) \right) \left(\bar{u}_\gamma(p_1) \gamma^\nu_{\delta \gamma} v_\delta(p_2) \right) \left(\bar{v}_\epsilon(k_1) \gamma_{\mu \rho} v_\rho(k_2) \right) \left(\bar{v}_\eta(k_2) \gamma^{\nu \chi} u_\chi(k_1) \right)
\]

Umsortieren der Terme (was wir jetzt mit den Indizes dürfen) führt auf

\[
\frac{1}{4} \sum \frac{e^4}{q^4} \left(u_\beta(p_1) \bar{u}_\gamma(p_1) \gamma^\nu_{\gamma \delta} v_\delta(p_2) \bar{u}_\alpha(p_2) \gamma^{\mu}_{\alpha \beta} \right) \left(u_\chi(k_1) \bar{u}_\epsilon(k_1) \gamma_{\mu \rho} v_\rho(k_2) \bar{v}_\eta(k_2) \gamma^{\nu \chi} \right)
\]

Wir nutzen die Vollständigkeit aus:

\[
\sum_s u(p, s) \bar{u}(p, s) = \frac{\not{p} + m}{2m} \quad \sum_s v(p, s) \bar{v}(p, s) = \frac{\not{p} - m}{2m}
\]

Die Masse des Elektron und Positron ist gleich. Wir bezeichnen sie mit \(m \). Für Myon und Antimyon sei die Masse \(M \). Man erhält also dann

\[
\frac{e^4}{4q^4} \left(\frac{\not{p}_1 + m}{2m} \right) \beta_\gamma \gamma^\nu_{\gamma \delta} \left(\frac{\not{p}_2 - m}{2m} \right) \delta_\alpha \beta \gamma^{\mu}_{\alpha \beta} \left(\frac{\not{k}_1 + M}{2M} \right) \chi_\epsilon \gamma_{\mu \rho} \left(\frac{\not{k}_2 - M}{2M} \right) \rho_\eta \gamma^{\nu \chi}
\]

Dies kann man in zwei Spuren umschreiben

\[
= \frac{e^4}{64m^2M^2q^4} \text{Tr} \left(\left(\not{p}_1 + m \right) \gamma^\nu \left(\not{p}_2 - m \right) \gamma^\mu \right) \text{Tr} \left(\left(\not{k}_1 + M \right) \gamma_{\mu} \left(\not{k}_2 - M \right) \gamma_\nu \right)
\]

103
Wir betrachten nun die Terme in den Spuren. Für eine ungerade Anzahl an γ-Matrizen wird die Spur null. Dies sind gerade die "gemischten" Terme.

\[
\frac{e^4}{64m^2M^2q^4} \text{Tr} \left(p_1 \gamma^\nu p_2 \gamma^\mu - m^2 \gamma^\nu \gamma^\mu \right) \text{Tr} \left(k_1 \gamma_\mu k_2 \gamma_\nu - M^2 \gamma_\mu \gamma_\nu \right)
\]

Wir spalten die geslashten Terme auf mit

\[
\bar{p}_1 = p_{1a} \gamma^a, \ldots
\]

und ziehen die p- bzw. k-Komponente vor:

\[
= \frac{e^4}{64m^2M^2q^4} \text{Tr} \left(p_{1a}p_{2\beta} \gamma^a \gamma^\nu \gamma^\beta \gamma^\mu - m^2 \gamma^\nu \gamma^\mu \right) \text{Tr} \left(k_1^\rho k_2^\omega \gamma_\mu \gamma_\nu \gamma_\rho - M^2 \gamma_\mu \gamma_\nu \right)
\]

Wir benutzen die Beziehungen aus der Aufgabe vorher und erhalten:

\[
= \frac{e^4}{4m^2M^2q^4} \left(2(p_1 \cdot k_1)(p_2 \cdot k_2) + 2(p_1 \cdot k_2)(p_2 \cdot k_1) + 2M^2 p_1 p_2 + 2m^2 k_1 k_2 + 4m^2 M^2 \right)
\]

(c) Wir wechseln ins Schwerpunktsystem. Dort gelten folgende Beziehungen:

\[
\bar{p}_1 = -\bar{p}_2 = \bar{p} \quad \bar{k}_1 = -\bar{k}_2 = \bar{k}
\]

\[
p_{10} = p_{20} = E_e \quad k_{10} = k_{20} = E_\mu
\]

\[
m^2 = E_e^2 - \bar{p}^2 \quad M^2 = E_\mu^2 - \bar{k}^2
\]

wobei in diesem Aufgabenteil $m = 0$ sei. Aufgrund der Viererimpulserhaltung gilt außerdem

\[
2E_e = 2E_\mu \implies E_\mu = E_e = E
\]
Für die Skalarprodukte erhält man dann, wenn Θ der Winkel zwischen \(\vec{p}_1 \) und \(\vec{k}_1 \) ist:

\[
p_1 p_2 = 2E^2
\]
\[
k_1 k_2 = 2E^2 - M^2
\]
\[
p_1 k_1 = p_2 k_2 = E^2 - |\vec{p}||\vec{k}| \cos \Theta = E \left(E - \sqrt{E^2 - M^2} \cos \Theta \right)
\]
\[
p_1 k_2 = p_2 k_1 = E^2 + |\vec{p}||\vec{k}| \cos \Theta = E \left(E + \sqrt{E^2 - M^2} \cos \Theta \right)
\]
\[
q^2 = (p_1 + p_2)^2 = 4E^2
\]

Wir setzen dies in das vorherige Ergebnis ein:

\[
= \frac{e^4}{24m^2M^2q^4} \left[(E^2 - |\vec{p}||\vec{k}| \cos \theta)^2
+ (E^2 + |\vec{p}||\vec{k}| \cos \theta)^2 + 2M^2E^2 + 2m^2E^2 - m^2M^2 - m^2M^2 + 4m^2M^2 \right]
\]

Multipliziert man die Klammern aus, so erhält man:

\[
= \alpha \left[2E^4 + 2p^2k^2 \cos^2 \theta + 2M^2E^2 + 2m^2E^2 + 2m^2M^2 \right]
\]

und da die Elektronenmasse klein ist und damit auch \(p^2 \approx E^2 \), ist dies ungefähr:

\[
\approx E^2 \alpha \left[2E^2 + 2(E^2 - M^2) \cos^2 \theta + 2M^2 \right] = E^2 \alpha \left[2E^2 + 2M^2 - 2(E^2 - M^2) \sin^2 \theta \right]
\]
\[
= \frac{e^4}{16m^2M^2E^2} \left(E^2 + M^2 - (E^2 - M^2) \sin^2 \theta \right)
\]

oder anders geschrieben:

\[
\frac{1}{4} \sum_{\text{spins}} |M|^2 = \frac{e^4}{16m^2M^2} \left(1 + \frac{M^2}{E^2} + \left(1 - \frac{M^2}{E^2} \right) \cos^2 \Theta \right)
\]

11. Übung
Aufgabe 1: β-Zerfall

Ein Tritiumkern (3H) verwandle sich durch β-Zerfall in einem Heliumkern (3He). Berechnen Sie die Wahrscheinlichkeit, dass ein Elektron, das sich im Grundzustand des Tritiumatoms befand, im 2s-Zustand des Heliumatoms gefunden wird.

Betrachten Sie ein Spin-1/2-Teilchen in einem Magnetfeld mit konstanter Komponente in z-Richtung und einer mit Frequenz ω in der xy-Ebene rotierenden Komponente. Der Hamilton-Operator für dieses System lautet:

\[
H(t) = H_0 + V(t),
\]

\[
H_0 = \omega_0 S_z,
\]

\[
V(t) = \omega_1 \cos(\omega t)S_x + \omega_1 \sin(\omega t)S_y,
\]

wobei S_i mit $i = x, y, z$ die Komponenten des Spin-Operators bezeichnet.

(a) Bestimmen Sie den Hamilton-Operator $H_I(t)$, der die Dynamik im Wechselwirkungsbild charakterisiert.

(b) Bestimmen Sie den zeitabhängigen Erwartungswert $\langle \vec{S}(t) \rangle$ für den Fall $\omega = \omega_0$. Zum Zeitpunkt $t = 0$ befindet sich das System im Grundzustand von H_0.

(c) Für die allgemeine Lösung der Schrödinger-Gleichung erweist es sich als vorteilhaft, eine andere Aufteilung des Hamilton-Operators zu wählen:

\[
H(t) = H'_0 + V'(t),
\]

\[
H'_0 = \omega S_z,
\]

\[
V'(t) = (\omega_0 - \omega)S_z + V(t).
\]

Im Wechselwirkungsbild lautet dann der Hamilton-Operator

\[
V'_I(t) = e^{iH'_0 t/\hbar} V'(t) e^{-iH'_0 t/\hbar}.
\]

Bestimmen Sie nun den Erwartungswert $\langle S_z(t) \rangle$ für beliebiges ω, wobei sich das System zum Zeitpunkt $t = 0$ wieder im Grundzustand von H_0 befindet.

(*) Aufgabe 3 (4P): Wasserstoffatom im elektrischen Feld

Betrachten Sie ein Wasserstoffatom in einem homogenen elektrischen Feld $\vec{E}(t)$, das entlang der z-Richtung liegt. Die Amplitude betrage $E(t) = A \tau / (\tau^2 + t^2)$, wobei A und τ vorgegebene Konstanten sind. Berechnen Sie die Wahrscheinlichkeit P für den Übergang des Elektrons aus dem Grundzustand (bei $t \to -\infty$) in den 2p-Zustand (bei $t \to +\infty$).

Hinweis:

\[
\int_{-\infty}^{+\infty} dx \, \frac{e^{\pm \omega x}}{a^2 + x^2} = \frac{\pi \alpha}{a} e^{-\omega a}.
\]
Die Anmeldung zu den Vorleistungen in QISPOS ist frei geschalten (PO2008 und PO2010). Sie können sich über das Studierendenportal anmelden.
39. Aufgabe: β-Zerfall

Für den Zerfall gilt:

\[2n + 1p^+ \rightarrow 1n + 2p^+ + 1e^- + 1\nu_e \]

Wir verwenden Störungstheorie, dabei werden die Zustände der Atome betrachtet:

Tritium im Grundzustand:

\[|1s^3H\rangle = \Psi_{100}(r) = R_{10}(r)Y_{00}(\theta, \varphi) = 2 \left(\frac{1}{a_B} \right)^{3/2} e^{-r/a_B} \frac{1}{\sqrt{4\pi}} \]

Helium:

\[|2s_{He}\rangle = \Psi_{200}(r)(Z = 2) = \frac{1}{\sqrt{2}} \left(\frac{Z}{a_B} \right)^{3/2} \left(1 - \frac{Zr}{2a_B} \right) e^{-Zr/2a_B} \frac{1}{\sqrt{4\pi}} \]

Die Übergangswahrscheinlichkeit ist bekanntermaßen gegeben durch

\[P_{1s^3H \rightarrow 2s_{He}} = |\langle 2s_{He}|1s^3H \rangle|^2 \]

Dieser Ansatz ist möglich wegen der "Sudden Approximation". Hierbei handelt es sich um eine Annahme, dass der Übergang so schnell stattfindet, dass sich der Bahndrehimpuls des Elektrons nicht ändert. Die gesuchte Wahrscheinlichkeit beträgt dann

\[= \left| \frac{4}{a_B^3} \int_0^\infty dr \left(\int \frac{d\Omega}{4\pi} \right) \left(1 - \frac{r}{a_B} \right) e^{-2r/a_B} \right|^2 \]

unter Verwendung von \(\int_0^\infty x^n e^{-ax} = \frac{n!}{a^{n+1}} \) beträgt dies

\[= \left| \frac{4}{a_B^3} \left[\frac{2!}{(2/a_B)^3} - \frac{1}{a_B} \frac{3!}{(2/a_B)^4} \right] \right|^2 = \frac{1}{4} \]

40. Aufgabe: Magnetische Resonanz

(a) Der Hamiltonoperator hat schon die benötigte Form, um mit der Transformation ins WW-Bild zu beginnen. Wir belassen also \(H_0 \) bei mit

\[H_0 = \omega_0 S_z \]

Im WW-Bild ist dann

\[V_t(t) = e^{i\omega_0 S_z t/\hbar} V(t) e^{-i\omega_0 S_z t/\hbar} \]

108
Dies entspricht gerade einer Drehung (passiver Art) um den "Winkel" \(\omega_0 t \) und die z-Achse (da der \(S_z \)-Operator ein Drehimpulsoperator in z-Richtung ist). Da es sich um eine passive Drehung eines Operators handelt, ist \(V_I \) (im gedrehten Bild - das entspricht in diesem Fall einfach dem WW-Bild) gegeben durch

\[
V_I(t) = \omega_1 S_x (\cos(\omega t) \cos(\omega_0 t) + \sin(\omega t) \sin(\omega_0 t)) + \omega_1 S_y (\sin(\omega t) \cos(\omega_0 t) - \cos(\omega t) \sin(\omega_0 t))
\]

\[
= \omega_1 \cos(\omega t - \omega_0 t) S_x + \omega_1 \sin(\omega t - \omega_0 t) S_y
\]

Es wurden also nicht der Operator selbst gedreht, sondern die ihm zugrundeliegenden Achsen.

(b) Für \(\omega = \omega_0 \) erhält man also

\[
V_I = \omega_1 S_x
\]

Für die Zeit \(t = 0 \) fällt der Zustand im WW-Bild mit dem im Schrödingerbild zusammen. Es ist also

\[
|\psi, 0\rangle_I = |\psi, 0\rangle = |1/2, -1/2\rangle
\]

wobei \(|1/2, -1/2\rangle \) der schon hinreichend bekannte Zustand mit \(s = 1/2 \) und \(m_s = -1/2 \) ist. Die Zeitentwicklung im WW-Bild ist gegeben durch

\[
|\psi, t\rangle_I = e^{-iV_I t/\hbar} |\psi, 0\rangle_I = e^{-i\omega_1 S_z t/\hbar} |\psi, 0\rangle_I
\]

nach der Rechnung oben. Der Spinoperator im WW-Bild ist gegeben durch

\[
\vec{S}_I = e^{iH_0 t/\hbar} \vec{S} e^{-iH_0 t/\hbar}
\]

Wieder sehen wir dies als Drehung auf (wie oben) und erhalten

\[
\vec{S}_I = \begin{pmatrix}
\cos(\omega_0 t) S_x - \sin(\omega_0 t) S_y \\
\sin(\omega_0 t) S_x + \cos(\omega_0 t) S_y \\
S_z
\end{pmatrix}
\]

und damit lassen sich dann die Erwartungswerte berechnen mit

\[
\langle \vec{S} \rangle = \langle \psi, t|_I \vec{S}_I |\psi, t\rangle_I = \langle \psi, 0|_I e^{i\omega_1 S_z t/\hbar} e^{i\omega_0 S_z t/\hbar} \vec{S} e^{-i\omega_0 S_z t/\hbar} e^{-i\omega_1 S_z t/\hbar} |\psi, 0\rangle
\]

Die entspricht also einer Drehung um \(\omega_0 t \) um die z-Achse und einer um \(\omega_1 t \) um die
x-Achse. Man erhält zuerst
\[
\langle \vec{S} \rangle = \left(\begin{array}{c}
\cos(\omega_0 t)S_x - \sin(\omega_0 t)\cos(\omega_1 t)S_y + \sin(\omega_0 t)\sin(\omega_1 t)S_z \\
\sin(\omega_0 t)S_x + \cos(\omega_0 t)\cos(\omega_1 t)S_y - \cos(\omega_0 t)\sin(\omega_1 t)S_z \\
\sin(\omega_1 t)S_y + \cos(\omega_1 t)S_z
\end{array} \right)
\]
und dann analog zu oben:
\[
\langle S_z \rangle = \cos(\omega_1 t)\langle S_z \rangle(0)
\]
\[
\langle S_x \rangle = \sin(\omega_0 t)\sin(\omega_1 t)\langle S_z \rangle(0)
\]
\[
\langle S_y \rangle = -\cos(\omega_0 t)\sin(\omega_1 t)\langle S_z \rangle(0)
\]
wobei mit dem gewählten Anfangszustand gerade
\[
\langle S_z \rangle(0) = -\frac{\hbar}{2}
\]
ist.

(c) V'_I lässt sich analog berechnen wie oben wobei wir ausnutzen, dass S_z mit H'_0 trivialerweise vertauscht. Man erhält dann analog
\[
V'_I = (\omega_0 - \omega)S_z + \omega_1 S_x
\]
Wieder lässt sich der Erwartungswert berechnen mit
\[
\langle S_z \rangle = \langle \psi, 0 | e^{iV'_It/\hbar} S_z e^{-iV'_It/\hbar} | \psi, 0 \rangle
\]
wobei $|\psi, 0\rangle$ der schon oben beschriebene Grundzustand $|1/2, -1/2\rangle$ ist. Wir benutzen diesmal die Baker-Hausdorff-Formel (da dies sich nicht als Drehung auffassen lässt - zumindest nicht so einfach) und erhalten nach einiger Rechnung (wenn wir $A_n = [i V'_I t/\hbar, S_z]_n$ setzen):
\[
A_0 = S_z \quad A_1 =
\]
\[
A_2 = t^2 (\omega_1 (\omega_0 - \omega) S_x - \omega_1^2 S_z) \quad A_3 = (-1)t^3 \omega_1 \left((\omega_0 - \omega)^2 + \omega_1^2\right) S_y
\]
und allgemein für $n \geq 1$:
\[
A_{2n+1} = (-1)t^2 \left((\omega_0 - \omega)^2 + \omega_1^2\right) A_{2n-1} \quad A_{2n+2} = (-1)t^2 \left((\omega_0 - \omega)^2 + \omega_1^2\right) A_{2n}
\]
Nun ist $\langle A_1 \rangle = 0$ mit dem gewählten Anfangszustand und außerdem $\langle A_2 \rangle = -t^2 \omega_1^2 \langle S_z \rangle$.

Für $n \geq 1$:

$$
\langle A_{2n-1} \rangle = 0 \quad \langle A_{2n+2} \rangle = t^{2n+1} \omega_1^2 ((\omega_0 - \omega)^2 + \omega_1^2)^n (-1)^{n+1} \langle S_z \rangle \quad \langle A_0 \rangle = \langle S_z \rangle
$$

Wir setzen dies zusammen in die Formel des Lieschen Entwicklungssatzes ein:

$$
e^X Y e^{-Y} = \sum \frac{1}{n!} [X, Y]_n
$$

Die Summe spalten wir sofort in gerade und ungerade Anteile auf, wobei - wenn wir den Erwartungswert betrachten - die ungeraden Terme wegfallen. Außerdem spalten wir den Nullten Term ab. Wir erhalten:

$$
\langle S_z \rangle = \sum_{n \geq 0} \frac{1}{(2n+2)!} (\langle A_{2n+1} \rangle + \langle A_0 \rangle) = \langle S_z \rangle(0) \left[1 + \sum_n t^{2n+2} \omega_1^2 ((\omega_0 - \omega)^2 + \omega_1^2)^n (-1)^{n+1} \right]
$$

Führen wir in der Summe die Ersetzung $n+1 \rightarrow n$ aus und setzen $(\omega_0 - \omega)^2 + \omega_1^2 = \Delta^2$, so erhält man

$$
\langle S_z \rangle = \langle S_z \rangle(0) \left[1 + \sum_{n \geq 1} \frac{1}{(2n)!} t^{2n} \omega_1^2 \frac{\Delta^{2n}}{\Delta^2} (-1)^{n} \right]
$$

Dies entspricht schon fast der Reiheenentwicklung des \cos - wir müssen jedoch den Nullten Term (also 1) wieder abziehen. Insgesamt erhält man dann:

$$
\langle S_z \rangle = \langle S_z \rangle(0) \left[1 + \omega_1^2 \frac{\cos(t \sqrt{\omega_1^2 + (\omega_0 - \omega)^2}) - 1}{\omega_1^2 + (\omega_0 - \omega)^2} \right]
$$

was für $\omega = \omega_0$ gerade wieder zum schon bekannten Term

$$
\langle S_z \rangle = \cos(\omega_1 t) \langle S_z \rangle(0)
$$

wird.

41. Aufgabe: Wasserstoffatom im elektrischen Feld

Für das elektrische Feld soll gelten

$$
\vec{E} = \frac{A \tau}{\tau^2 + t^2} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
$$
deshalb wählen wir das Skalarpotential ϕ mit

$$\phi = -\frac{A\tau z}{\tau^2 + t^2}$$

da dann gilt:

$$-\nabla \phi = \vec{E}$$

Das Störpotential ist also gegeben durch

$$V(t) = e\phi = -eA\tau z \frac{\tau}{\tau^2 + t^2}$$

wobei es (oBdA) nur für $t > 0$ wirkt. Sei $\hat{V}(\omega)$ die Fouriertransformierte von $V(t)$. Dann gilt nach Definition der Fouriertransformierten

$$\hat{V}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} V(t)e^{i\omega t} \, dt$$

aber auch umgekehrt für die Rücktransformation:

$$V(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{V}(\omega)e^{-i\omega t} \, d\omega = \frac{1}{\sqrt{2\pi}} \left(\int_{0}^{\infty} \hat{V}(\omega)e^{-i\omega t} \, d\omega + \int_{-\infty}^{0} \hat{V}(\omega)e^{i\omega t} \, d\omega \right)$$

Im hinteren Integral führen wir eine Variablentransformation $\omega \rightarrow -\omega$ durch und erhalten:

$$V(t) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \hat{V}(\omega)e^{-i\omega t} + \hat{V}(\omega)e^{i\omega t} \, d\omega$$

Wir betrachten den Integranden zuerst für ein festes (und aufgrund der Integrationsgrenzen auch positives) ω. Wir setzen

$$F(\omega) = \hat{V}(\omega) \quad F^\dagger(\omega) = \hat{V}(\omega)$$

und können somit mit der Formel aus der Vorlesung die Übergangswahrscheinlichkeit für ein festes ω berechnen mit

$$P_{m\rightarrow n}(\omega) = \frac{2\pi t}{\hbar} \left(\delta(E_n - E_m - \hbar\omega) | \langle n | F | m \rangle |^2 + \delta(E_n - E_m + \hbar\omega) | \langle n | F^\dagger | m \rangle |^2 \right)$$

Um dann die gesamte Wahrscheinlichkeit (für alle ω) zu berechnen, setzten wir dies wieder in die Formel für $V(t)$ ein und erhalten:

$$P_{m\rightarrow n} = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} P_{m\rightarrow n}(\omega) \, d\omega$$

112
Wie man sieht, ist \(\omega \) in allem Fällen positiv. Damit wird der Term \(E_n - E_m + \hbar \omega \) nie Null und wir können ihn vernachlässigen. Wir erhalten also

\[
P_{m \rightarrow n} = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{2\pi t}{\hbar} \delta(E_n - E_m - \hbar \omega) |\langle n| F|m \rangle|^2 \text{d}\omega = \frac{\sqrt{2\pi t}}{\hbar^2} |\langle n| F|m \rangle|^2
\]

wobei \(\omega \) durch

\[
E_n - E_m = \hbar \omega \implies \omega = \frac{E_n - E_m}{\hbar}
\]

gegeben ist und durch die Delta-Distribution die Integration sehr einfach wird (wenn man die Vorfaktoren beachtet). Wir müssen also nur noch das Matrixelement \(\langle n| F|m \rangle \) berechnen. Zuerst einmal ist nach Definition für ein festes, positives \(\omega \):

\[
F(\omega) = \tilde{V}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} V(t) e^{i\omega t} \text{d}t = -\frac{eA\tau z}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\omega t} \text{d}t \text{ Blatt} = -\frac{eA\tau z}{\sqrt{2\pi}} \frac{\pi e^{-\omega \tau}}{\tau}
\]

Anmerkung: Aufgrund des Betrages in der Formel auf dem Blatt erhielte man für \(F^\dagger = \tilde{V}(-\omega) \) das selbe Ergebnis, was auch nicht verwundert, da \(F \) reellwertig ist.

Das System befindet sich am Anfang im Zustand 1s. Also

\[
|m\rangle = |100\rangle
\]

wobei wir die übliche Schreibweise \(|nlm\rangle \) für einen Zustand gewählt haben. Weiterhin ist also der Endzustand gegeben durch

\[
|n\rangle = |21m\rangle
\]

wobei der \(m \)-Wert des Zustandes noch bestimmt werden muss. Es ist also in Ortsdarstellung:

\[
\psi_{100} = \psi_m = R_{10} Y_{00}
\]

und

\[
\psi_{21m} = \psi_n = R_{21} Y_{1m}
\]

Also ist

\[
|n\rangle F |m\rangle = \int \psi_{210}^* \left(-\frac{eA\tau z}{\sqrt{2\pi}} \frac{\pi}{\tau} e^{-\omega \tau} \right) \psi_{100} \text{d}^3r = -eA \sqrt{\frac{\pi}{2}} e^{-\omega \tau} \int R_{21} Y_{1m}^* z R_{10} Y_{00} \text{d}^3r
\]

Wir wechseln in Kugelkoordinaten und erhalten mit

\[
z = r \cos(\theta)
\]
\[
\langle n | F | m \rangle = -eA \sqrt{\frac{\pi}{2}} e^{-\omega \tau} \int Y^*_{1m} \cos(\theta)Y_{00} R_{21} r R_{10} r^2 d\Omega \ dr
\]

Nun ist
\[
\cos \theta = \sqrt{\frac{4\pi}{3}} Y_{10} \quad Y_{00} = \sqrt{\frac{1}{4\pi}}
\]

und damit
\[
Y_{00} \cos \theta = \frac{1}{\sqrt{3}} Y_{10}
\]

Da die Kugelflächenfunktionen normiert sind, ist damit auch
\[
\int Y^*_{1m} \cos(\theta)Y_{00} d\Omega = \frac{1}{\sqrt{3}} \int Y^*_{1m} Y_{10} d\Omega = \frac{1}{\sqrt{3}} \delta_{m0}
\]

Es ergibt sich also nur überhaupt ein Übergang mit einer Wahrscheinlichkeit ungleich Null, wenn \(m = 0 \) ist, also der neue Zustand \(|n\rangle = |210\rangle\) lautet. Es bleibt noch
\[
\langle n | F | m \rangle = \frac{\alpha}{\sqrt{3}} \int R_{21} r^3 R_{10} dr
\]

zu berechnen. Dazu setzen wir \(R_{21} \) und \(R_{10} \) ein (wie sie z.B. in QM I berechnet wurden) und erhalten:
\[
\langle n | F | m \rangle = \frac{\alpha}{\sqrt{3}} \int \frac{4}{a_0^4} e^{-r/a_0} \sqrt{\frac{1}{24a_0^3}} \left(\frac{r}{a_0} \right) e^{-r/2a_0} dr = \frac{\alpha}{a_0^3 \sqrt{18}} \int r^4 e^{-3r/2a_0} \ dr
\]

Wir setzen \(\beta = \frac{3}{2a_0} \) und berechnen das Integral durch partielle Integration. Die Terme mit \(fg|_0^\infty \) verschwinden dabei immer, da für \(r \to 0 \) die \(r^n \)-Terme verschwinden und für \(r \to \infty \) die \(e^{-\beta r} \)-Terme. Es ist dann:
\[
\int_0^\infty r^4 e^{-\beta r} dr = \frac{4}{\beta} \int_0^\infty r^3 e^{-\beta r} dr = \frac{12}{\beta^2} \int_0^\infty r^2 e^{-\beta r} dr = \frac{24}{\beta^3} \int_0^\infty r e^{-\beta r} dr = \frac{24}{\beta^4} \int_0^\infty e^{-\beta r} dr = \frac{24}{\beta^5}
\]

und damit oben eingesetzt:
\[
\langle n | F | m \rangle = \frac{\alpha}{a_0^4 \sqrt{18}} \left[\frac{256}{81 \sqrt{18}} \alpha a_0 = \frac{128}{243} a_0 e A e^{-\omega \tau} \sqrt{\pi} \right]
\]

Dies können wir in die Formel für die Übergangswahrscheinlichkeit einsetzen und erhalten
\[
P_{m \to n} = \frac{\sqrt{2\pi \hbar}}{\hbar^2} |\langle n | F | m \rangle|^2 = \frac{\sqrt{2\pi^3 \hbar^2}}{\hbar^2} e A^2 a_0^2 \left(\frac{128}{243} \right)^2 e^{-2\omega \tau}
\]
wobei \(\omega \) wie oben beschrieben durch

\[
\omega = \frac{E_n - E_m}{\hbar} = \frac{-\frac{E_i}{2^2} + \frac{E_i}{1^2}}{\hbar} = \frac{3E_i}{4\hbar}
\]

ggeben ist.

12. Übung
(*) Aufgabe 1 (6P): Zweizustandssystem im äußeren Potential.

Ein Zweizustandssystem im zeitlich harmonischen äußeren Potential wird durch folgenden Hamilton-Operator beschrieben

\[H = H_0 + V(t) , \]

wobei \(H_0 \) der ungestörte Hamilton-Operator bezeichnet:

\[H_0|1\rangle = E_1|1\rangle, \quad H_0|2\rangle = E_2|2\rangle, \quad \text{mit} \quad E_2 > E_1. \]

Der Störoperator im Raum der ungestörten Eigenzustände \(\{ |1\rangle, |2\rangle \} \) ist gegeben durch

\[V(t) = \lambda \left(\begin{array}{cc} 0 & e^{i\omega t} \\ e^{-i\omega t} & 0 \end{array} \right). \]

(a) Lösung der zeitabhängige Schrödinger-Gleichung

\[i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle = H |\Psi(t)\rangle \]

für die Anfangsbedingung

\[|\Psi(t = 0)\rangle = |1\rangle. \]

Dabei erhalten Sie ein System von gekoppelten Differentialgleichungen für die Koeffizienten \(c_n(t) = \langle n|\Psi(t)\rangle, n = 1, 2 \), das exakt gelöst werden kann.

(b) Benutzen Sie nun Störungstheorie in niederster, nicht-trivialer Ordnung, um die Koeffizienten \(c_n(t), n = 1, 2 \), zu berechnen. Vergleichen Sie Ihr Ergebnis mit der exakten Lösung von Aufgabenteil (a) für kleine Werte von \(\lambda \). Betrachten Sie dabei folgende Fälle separat:

(i) \(\omega \approx \omega_{21} \) mit \(\omega_{21} = (E_2 - E_1) / \hbar \);
(ii) \(\omega \gg \omega_{21} \) bzw. \(\omega \ll \omega_{21} \).

Aufgabe 2: Hamilton-Operator des freien Strahlungsfeldes

Der Hamilton-Operator des freien Strahlungsfeldes in einem endlichen Volumen \(V \) ist gegeben durch

\[H_{\text{rad}} = \frac{\varepsilon_0 c^2}{2} \int d^3r \left(\frac{E^2}{c^2} + \vec{B}^2 \right)
= \frac{V \varepsilon_0 c^2}{2} \sum_{\vec{k}} \left(\frac{1}{c^2} |\vec{A}(t)|^2 + |\vec{k} \times \vec{A}(t)|^2 \right), \]

wobei \(\vec{A}(t) \) durch die Fourier-Reihe des Vektorpotentials \(\vec{A}(\vec{r}, t) = \sum_{\vec{k}} \vec{A}_{\vec{k}}(t)e^{i\vec{k} \cdot \vec{r}} \) definiert sind. Zeigen Sie, dass Gl. (1) in folgender Form geschrieben werden kann

\[H_{\text{rad}} = \sum_{\vec{k}, \lambda} hck \left(\tilde{a}^\dagger_{\vec{k}, \lambda} \tilde{a}_{\vec{k}, \lambda} + \frac{1}{2} \right), \]

wobei \(\vec{k} \) den Wellenvektor und \(\lambda \) die Polarisation bezeichnet. Das Vektorpotentials ist dabei gegen durch (mit \(\omega_k = kc \))

\[\vec{A}(\vec{r}, t) = \sum_{\vec{k}, \lambda} \sqrt{\frac{\hbar}{2V \varepsilon_0 kc}} \left(a_{\vec{k}, \lambda} \varepsilon_{\vec{k}, \lambda} e^{i(\vec{k} \cdot \vec{r} - \omega_k t)} + a^\dagger_{\vec{k}, \lambda} \varepsilon^*_\lambda e^{-i(\vec{k} \cdot \vec{r} - \omega_k t)} \right). \]
wobei $a_{\vec{k},\lambda}$ und $a_{\vec{k},\lambda}^\dagger$ die Erzeugungs- bzw. Vernichtungsoperatoren sind. Es gilt

$$[a_{\vec{k},\lambda}, a_{\vec{k}',\lambda'}^\dagger] = \delta_{\vec{k},\vec{k}'} \delta_{\lambda,\lambda'}, \quad [a_{\vec{k},\lambda}, a_{\vec{k}',\lambda'}] = 0, \quad \text{und} \quad [a_{\vec{k},\lambda}^\dagger, a_{\vec{k}',\lambda'}^\dagger] = 0.$$

Hinweis: O.B.d.A. kann man Polarisationsvektoren wählen, so dass gilt $\vec{\varepsilon}_{\vec{k},\lambda} = \vec{\varepsilon}_{-\vec{k},\lambda}$.

(* Aufgabe 3(4P): Kommutatorrelationen

Überprüfen Sie die Kommutatorrelation für den Drehimpulsoperator \vec{L} und den Ortsoperator \vec{r}

$$[\vec{L}^2, [\vec{L}^2, \vec{r}]] = 2\hbar^2 \{\vec{L}^2, \vec{r}\}.$$

Berechnen Sie dazu die Kommutatoren $[\vec{L}^2, x_i]$, wobei x_i eine Komponente des Ortsoperators bezeichnen.
42. Aufgabe: Zweizustandssystem im äußeren Potential

Lösung aus dem Tut:

(a) Wir wählen als Ansatz im Schrödingerbild:

$$|\Psi(t)\rangle_S = c_1(t) |1\rangle + c_2(t) |2\rangle$$

und im Wechselwirkungsbild:

$$|\Psi(t)\rangle_I = c_1(t) |1\rangle + c_2(t) |2\rangle$$

mit

$$|\Psi(t)\rangle_S = e^{iH_0 t/\hbar} |\Psi(t)\rangle_I$$

Dies setzt man in die Schrödingergleichung ein und rechnet dann beide Seiten aus:

$$i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle_S = H |\Psi(t)\rangle_S$$

$$i\hbar \dot{c}_1 e^{-iE_1 t/\hbar} |1\rangle + E_1 c_1 e^{-iE_1 t/\hbar} |1\rangle + (i\hbar \dot{c}_2 e^{-iE_2 t/\hbar} + E_2 c_2 e^{-iE_2 t/\hbar}) |2\rangle$$

$$= c_1 E_1 e^{-iE_1 t/\hbar} |1\rangle + c_2 E_2 e^{-iE_2 t/\hbar} |2\rangle + c_1 \lambda e^{-i\omega t} |2\rangle e^{-iE_1 t/\hbar} + c_2 \lambda e^{i\omega t} e^{-iE_2 t/\hbar} |1\rangle$$

mit $$\omega_{21} := \frac{E_2 - E_1}{\hbar}$$ erhält man zwei Gleichungen durch die Separation der Zustände:

(I) $$i\dot{c}_1 = c_2 \frac{\lambda}{\hbar} e^{-i(\omega_{21} - \omega)t}$$

(II) $$i\dot{c}_2 = c_1 \frac{\lambda}{\hbar} e^{i(\omega_{21} - \omega)t}$$

Diese Gleichungen entkoppelt man, indem eine Gleichung zuerst abgeleitet wird (hier $$\frac{d}{dt}$$ (II))

$$i\ddot{c}_2 = \frac{\lambda}{\hbar} e^{i(\omega_{21} - \omega)t} + c_1 \frac{\lambda}{\hbar} i(\omega_{21} - \omega) e^{i(\omega_{21} - \omega)t}$$

$$= -\frac{\lambda}{\hbar} c_2 + \frac{\lambda^2}{\hbar^2} c_2$$

wobei die Formeln (I) und (II) verwendet wurden.

$$\ddot{c}_2 - i\Omega \dot{c}_2 + \frac{\lambda^2}{\hbar^2} c_2 = 0$$

mit $$\Omega = \omega_{21} - \omega$$. Die DGL für kann $$c_1$$ analog berechnet werden, was jedoch nicht nötig ist, weil man über (II) die Lösung von $$c_1$$ aus $$\dot{c}_2$$ erhält.

Der Ansatz für $$c_2$$ lautet $$c_2 = A' e^{\delta t}$$ mit $$\delta = \frac{i(\Omega + D)}{2}$$ und $$D = \sqrt{\Omega^2 + \frac{4\lambda^2}{\hbar^2}}$$. Aus der
gegebenen Anfangsbedingung $c_2(0) = 0$ folgt deshalb:

$$c_2 = A \sin \left(\frac{D}{2} t \right) e^{i\Omega t/2}$$

mit

$$c_1 = \frac{i\hbar}{\lambda} e^{-i\Omega t}$$

$$= \frac{i\hbar}{\lambda} e^{-i\Omega t} A \left(\frac{D}{2} \cos \left(\frac{D}{2} t \right) e^{i\Omega t/2} + \frac{i\Omega}{2} \sin \left(\frac{D}{2} t \right) e^{i\Omega t/2} \right)$$

Aus der Anfangsbedingung $c_1(0) = 1$ ergibt sich $A = -\frac{i\lambda}{\hbar} \frac{2}{D}$. Daraus folgt:

$$c_1(t) = e^{-i\Omega t/2} \left(\cos \left(\frac{D}{2} t \right) + \frac{i\Omega}{D} \sin \left(\frac{D}{2} t \right) \right)$$

$$c_2(t) = e^{i\Omega t/2} - \frac{i\lambda}{\hbar} \frac{2}{D} \sin \left(\frac{D}{2} t \right)$$

(b) Im Wechselwirkungsbild ist die Störungstheorie gegebenen durch

$$|\Psi(t)\rangle_I = |\Psi(0)\rangle_I + \frac{1}{i\hbar} \int_0^t dt' |V_i(t') \Psi(t)\rangle_I$$

wobei in erster Ordnung im Intergraler Term $|\Psi(t)\rangle_I = |\Psi(0)\rangle_I$ genähert werden kann. Die Koeffizienten können nun einfach berechnet werden:

$$c_1 = \langle 1 | \Psi(t) \rangle_I \approx \langle 1 | 1 \rangle + \frac{1}{i\hbar} \int_0^t dt' \langle 1 | V_i | 1 \rangle + O(\lambda^2) \approx 1$$

$$c_2 = \langle 2 | \Psi(t) \rangle_I \approx \langle 2 | 1 \rangle + \frac{1}{i\hbar} \int_0^t dt' \langle 2 | e^{iH_0 t'/\hbar} V e^{-iH_0 t'/\hbar} | 1 \rangle$$

$$= \frac{\lambda}{i\hbar \Omega} \left(e^{i\Omega t} - 1 \right) = \frac{-2i\lambda}{\hbar \Omega} e^{i\Omega t/2} \sin \left(\frac{\Omega t}{2} \right)$$

Verglichen mit der exakten Lösung ergibt sich mit $\lambda << 1$:

$$D = \Omega + O(\lambda^2)$$

$$c_1 \approx e^{-i\Omega t/2} \left(\cos \left(\frac{\Omega t}{2} \right) + i \sin \left(\frac{\Omega t}{2} \right) \right) = 1$$

119
\[c_2 \approx -\frac{i\lambda}{\hbar \Omega} \sin \left(\frac{\Omega t}{2} \right) e^{i\Omega t/2} \]

Dies stimmt mit der exakten Lösung überein.

(1) \(\omega \approx \omega_{21} \Rightarrow \Omega \to 0 \)

\[c_2 = -\frac{i\lambda}{\hbar} \lim_{\Omega \to 0} \left(\frac{\sin(\Omega t/2)}{\Omega/2} \right) = -\frac{i\lambda}{\hbar} t \]

\(|c_2|^2 \) Übergangswahrscheinlichkeit \(\Rightarrow \) Resonanz

(2) \(\omega << \omega_{21} \) bzw. \(\omega >> \omega_{21} \Rightarrow |\Omega| \to \infty \)

\[c_2 = -\frac{i\lambda}{\hbar} \lim_{\Omega \to \infty} \left(\frac{\sin(\Omega t/2)}{\Omega/2} \right) = 0 \]

Es gibt keinen Übergang, das System ist also nicht resonant.

Nils Lösung:

(a) Wir machen folgenden Ansatz für \(|\psi\rangle \):

\[|\psi\rangle = c_1 e^{-iE_1 t/\hbar} |1\rangle + c_2 e^{-iE_2 t/\hbar} |2\rangle \]

da dieser uns die Rechnung stark vereinfacht. Es folgt dann nach einigem Umstellen aus der Schrödinger-Gleichung, wenn man sie direkt in zwei Teilgleichungen aufspaltet:

\[\dot{c}_1 = -\frac{i\lambda}{\hbar} e^{-i(E_2 - E_1)/\hbar + \omega} c_2 \]

\[\dot{c}_2 = -\frac{i\lambda}{\hbar} e^{-i(E_2 - E_1)/\hbar - \omega} c_1 \]

Beide Gleichungen können wir jeweils ableiten und in die andere Einsetzen. Wir erhalten dann zwei Differentialgleichungen für die beiden \(c_i \):

\[\frac{\lambda^2}{\hbar^2} c_1 + \ddot{c}_1 + i(\omega_{21} - \omega)\dot{c}_1 = 0 \]

\[\frac{\lambda^2}{\hbar^2} c_2 + \ddot{c}_2 - i(\omega_{21} - \omega)\dot{c}_2 = 0 \]

Für beide wählen wir den Ansatz \(e^{i\rho t} \) und erhalten eine Gleichung für \(\rho \), welche
einfach zu lösen ist (Gleichung 2. Grades). Wir erhalten dann die Lösungen
\[c_1 = e^{-i\rho_1 t}(A_1 e^{i\rho_2 t} + B_1 e^{-i\rho_2 t}) \quad c_2 = e^{i\rho_1 t}(A_2 e^{i\rho_2 t} + B_2 e^{-i\rho_2 t}) \]
mit
\[\rho_1 = \frac{\omega_{21} - \omega}{2} \quad \rho_2 = \sqrt{\rho_1^2 + \frac{\lambda^2}{\hbar^2}} \]
Aufgrund der Anfangsbedingungen muss
\[A_1 + B_1 = 1 \quad A_2 + B_2 = 0 \]
gelten, weshalb wir die Terme direkt in Sinus und Cosinus umschreiben können. Zur Kontrolle setzt man noch einmal in die gekoppelte Differentialgleichung von oben ein und erhält dann nach einigem Umformen die Lösungen:
\[c_1 = e^{-i\rho_1 t}\left(\cos(\rho_2 t) + i\frac{\rho_1}{\rho_2} \sin(\rho_2 t)\right) \quad c_2 = -i e^{i\rho_1 t} \frac{\lambda}{\hbar \rho_2} \sin(\rho_2 t) \]
Wir betrachten jetzt gleich die Näherungen. Wenn \(\lambda \) sehr klein ist, dann ist \(\rho_2 \approx \rho_1 \) und wir erhalten:
\[c_1 \approx e^{-i\rho_1 t}(\cos(\rho_1 t) + i \sin(\rho_1 t)) = e^{-i\rho_1 t} e^{i\rho_1 t} = 1 \]
und
\[c_2 \approx -i \frac{\lambda}{\hbar \rho_1} e^{i\rho_1 t} \sin(\rho_1 t) \]
(b) Wir betrachten jetzt das System in 1. Ordnung Störungstheorie. Dabei ist \(|m\rangle = |1\rangle \) der Startzustand. Für \(|2\rangle \) gilt dann:
\[\langle 2, t | \psi, t \rangle = \delta_{21} + \frac{1}{i\hbar} \int_0^t e^{i\tau(E_2 - E_1)/\hbar} \langle 2 | V(t') | 1 \rangle \, dt' \]
Nun ist nach Definition
\[E_2 - E_1 = \hbar \omega_{21} \]
und
\[\langle 2 | V(t) | 1 \rangle = \lambda e^{-i\omega t} \]
und da \(n \neq m \) gilt:
\[\langle 2, t | \psi, t \rangle = \frac{\lambda}{i\hbar} \int_0^t e^{i\tau(\omega_{21} - \omega)} \, dt' = \frac{\lambda}{i\hbar} \int_0^t e^{2i\rho_1 t} \, dt' = \frac{\lambda}{i\hbar(2i\rho_1)} (e^{2i\rho_1 t} - 1) = -i \frac{\lambda}{\hbar \rho_1} e^{i\rho_1 t} \sin(\rho_1 t) \]
Mit $|2, t\rangle = e^{-iE_2 t/\hbar}$ sieht man auch direkt, dass der ausgerechnete Wert gerade c_2 entspricht. Also stimmt hier die Störungstheorie. Für den Zustand $|1\rangle$ ergibt sich ganz einfach

$$\langle 1, t|\psi, t \rangle = 1$$
da das Matrixelement $\langle 1|V(t)|1\rangle$ verschwindet. Auch hier sehen wir wieder mit

$$|1, t\rangle = e^{-iE_1 t/\hbar}$$
dass dies schon dem Wert von c_1 entspricht und sehen, dass auch hier die Entwicklung richtig ist.

43. Aufgabe: Hamilton-Operator des freien Strahlungsfeldes

Für den Hamilton-Operator ist gegeben:

$$H_{\text{rad}} = \frac{\varepsilon_0 c^2}{2} \int d^3 r \left(\vec{E}^2 c^2 + \vec{B}^2 \right)$$

$$= \frac{V \varepsilon_0 c^2}{2} \sum \vec{k} \left(\frac{1}{c^2} |\vec{A}_k(t)|^2 + \left| \vec{k} \times \vec{A}_k(t) \right|^2 \right)$$

Um zu zeigen, dass der Hamiltonoperator auf die ebenfalls gegebene Form gebracht werden kann, wird zuerst das Vektorpotential mithilfe von $\vec{A}(\vec{r}, t) = \sum \vec{A}_k e^{i\vec{k}\vec{r}}$ umgeschrieben:

$$\vec{A}(\vec{r}, t) = \sum_{\vec{k}, \lambda} \sqrt{\frac{\hbar}{2 k_0 c \varepsilon_0}} \begin{pmatrix} a_{\vec{k}, \lambda} \vec{e}_{\vec{k}, \lambda} e^{i(\vec{k} \vec{r} - \omega_k t)} + a^{\dagger}_{\vec{k}, \lambda} \vec{e}^*_{\vec{k}, \lambda} e^{-i(\vec{k} \vec{r} - \omega_k t)} \\ - \end{pmatrix}$$

$$\vec{A}_k(t) = \sum_{\lambda} N \begin{pmatrix} a_{\vec{k}, \lambda} \vec{e}_{\vec{k}, \lambda} e^{-i\omega_k t} + a^{\dagger}_{-\vec{k}, \lambda} \vec{e}^*_{-\vec{k}, \lambda} e^{i\omega_k t} \\ - \end{pmatrix}$$
Nun werden die jeweiligen Betragsquadrate des Vektorpotentials berechnet, damit diese später eingesetzt werden können.

\[
|\vec{A}_k|^2 = \left| N i \omega_k \sum_{\lambda} \left(-a_{k,\lambda} \bar{\varepsilon}_{k,\lambda} e^{-i\omega_k t} + a_{-k,\lambda}^\dagger \bar{\varepsilon}_{-k,\lambda}^* e^{i\omega_k t} \right) \right|^2 \\
= \sum_{\lambda,\lambda'} N^2 \omega_k^2 \left(a_{k,\lambda}^\dagger a_{-k,\lambda}^\dagger e_{k,\lambda}^* \cdot e_{k,\lambda'}^* - a_{k,\lambda} a_{-k,\lambda} \bar{\varepsilon}_{k,\lambda} \cdot \bar{\varepsilon}_{-k,\lambda'} e^{-2i\omega_k t} \right) \\
+ N^2 \omega_k^2 \left(a_{k,\lambda}^\dagger a_{-k,\lambda}^\dagger e_{k,\lambda}^* \cdot e_{k,\lambda'}^* e^{2i\omega_k t} + a_{k,\lambda}^\dagger a_{-k,\lambda} \bar{\varepsilon}_{k,\lambda} \cdot \bar{\varepsilon}_{-k,\lambda'} e^{i\omega_k t} \right) \\
\]
mit \(\bar{\varepsilon}_{k,\lambda}^* = \bar{\varepsilon}_{-k,\lambda} \) und \(\bar{\varepsilon}_{k,\lambda} \cdot \bar{\varepsilon}_{k,\lambda'} = \delta_{\lambda\lambda'} \).

\[
|\vec{k} \times \vec{A}_k|^2 = \left| N \sum_{\lambda} \left(a_{k,\lambda} \vec{k} \times \bar{\varepsilon}_{k,\lambda} e^{-i\omega_k t} + a_{-k,\lambda}^\dagger \vec{k} \times \bar{\varepsilon}_{-k,\lambda}^* e^{i\omega_k t} \right) \right|^2 \\
\]
mit \(\vec{k} \times \bar{\varepsilon}_{k,1} = |k| \bar{\varepsilon}_{k,2} \) im isotropen Medium.

\[
|\vec{k} \times \vec{A}_k| = \left| N k \left(a_{k,1} \bar{\varepsilon}_{k,2} e^{-i\omega_k t} - a_{k,2} \bar{\varepsilon}_{k,1} e^{-i\omega_k t} + a_{k,2}^\dagger a_{k,1}^\dagger \bar{\varepsilon}_{k,1}^* e^{i\omega_k t} - a_{k,2}^\dagger \bar{\varepsilon}_{k,2}^* e^{i\omega_k t} \right) \right|^2 \\
= N^2 k^2 \left(a_{k,1}^\dagger a_{k,1} + a_{k,2} a_{-k,1}^\dagger e^{-2i\omega_k t} + a_{k,2}^\dagger a_{-k,2}^\dagger + a_{k,1}^\dagger a_{-k,2}^\dagger e^{-2i\omega_k t} \right) \\
+ N^2 k^2 \left(a_{k,1}^\dagger a_{-k,1} + a_{k,2} a_{-k,2}^\dagger e^{2i\omega_k t} + a_{k,2}^\dagger a_{-k,2}^\dagger + a_{k,1}^\dagger a_{-k,2}^\dagger e^{2i\omega_k t} \right) \\
= N^2 k^2 \sum_{\lambda} \left(a_{k,\lambda} a_{k,\lambda}^\dagger + a_{k,\lambda} a_{-k,\lambda} e^{-2i\omega_k t} + a_{k,\lambda}^\dagger a_{-k,\lambda}^\dagger e^{2i\omega_k t} + a_{k,\lambda} a_{-k,\lambda}^\dagger e^{2i\omega_k t} + a_{k,\lambda}^\dagger a_{-k,\lambda} e^{-2i\omega_k t} a_{k,\lambda}^\dagger \right) \\
\]
Diese eingesetzt und miteinander verrechnet ergibt

\[
H_{\text{rad}} = \frac{V \varepsilon_0 e^2}{2} \frac{h}{2k c V \varepsilon_0} k^2 \sum_{k,\lambda} \left(2 + a_{k,\lambda} a_{k,\lambda}^\dagger + a_{-k,\lambda}^\dagger a_{-k,\lambda}^\dagger \right) \left(a_{k,\lambda} a_{k,\lambda}^\dagger + a_{-k,\lambda}^\dagger a_{-k,\lambda} ^\dagger \right) \\
\Rightarrow H_{\text{rad}} = \sum_{k,\lambda} \frac{h c}{k} \left(a_{k,\lambda} a_{k,\lambda}^\dagger + \frac{1}{2} \right) \\
\]
und damit die Behauptung.
44. Aufgabe: Kommutatorrelationen

Wir benutzen ohne Nennung die bekannten Kommutatoren:

\[[r_j, p_k] = i\hbar\delta_{j,k} \quad [r_j, r_k] = [p_j, p_k] = 0 \quad [L^2, L_i] = 0 \]

Dann ist zuerst einmal mit der Definition von des Drehimpulses als

\[L_i = \varepsilon_{ijk} r_j p_k \]

der Kommutator

\[[L_i, r_n] = \varepsilon_{ijk} [r_j p_k, r_n] = \varepsilon_{ijk} (r_j [p_k, r_n] + [r_j, r_n] p_k) = -i\hbar \varepsilon_{ijk} r_j \delta_{kn} = -i\hbar \varepsilon_{ijn} r_j \]

Damit ist dann

\[[L^2, r_n] = \sum_i [L^2_i, r_n] = \sum_i (L_i [L_i, r_n] + [L_i, r_n] L_i) = -i\hbar \sum_i \varepsilon_{ijn} (L_i r_j + r_j L_i) \]

und damit insgesamt

\[[L^2, [L^2, r_n]] = -i\hbar \sum_i \varepsilon_{ijn} \left([L^2, L_i r_j] + [L^2, r_j L_i] \right) \]

\[= -i\hbar \sum_i \varepsilon_{ijn} \left(L_i [L^2, r_j] + [L^2, L_i] r_j + r_j [L^2, L_i] + [L^2, r_j] L_i \right) \]

Wir benutzen wieder das Ergebnis von oben und \([L^2, L_i] = 0\):

\[= (i\hbar)^2 \sum_{i,j,l} \varepsilon_{ijn} \varepsilon_{ljm} (L_i L_l r_m + L_l r_m L_i + L_i r_m L_i + r_m L_i L_i) \]

Nun ist

\[\varepsilon_{ijn} \varepsilon_{ljm} = -\varepsilon_{jim} \varepsilon_{jln} = -\left(\delta_{il} \delta_{nm} - \delta_{im} \delta_{nl} \right) \]

und damit:

\[[L^2, [L^2, r_n]] = \hbar^2 \sum_i \left(L_i^2 r_n + L_i r_n L_i + L_i r_n L_i + r_n L_i^2 - L_i L_n r_i - L_i r_i L_n - L_n r_i L_i - r_i L_n L_i \right) \]

Wir machen ein paar Zwischenrechnungen:

\[[L_i, r_n] = -i\hbar \varepsilon_{ijn} r_j = L_i r_n - r_n L_i \]
und damit:

\[L_i r_n L_i = (L_i r_n) L_i = (-i\hbar \varepsilon_{ijn} r_j + r_n L_i) L_i = -i\hbar \varepsilon_{ijn} r_j L_i + r_n L_i^2 \]

aber gleichzeitig:

\[L_i r_n L_i = L_i (r_n L_i) = L_i (L_i r_n + i\hbar \varepsilon_{ijn} r_j) = L_i^2 r_n + i\hbar \varepsilon_{ijn} L_i r_j \]

und damit

\[2L_i r_n L_i = L_i^2 r_n + r_n L_i^2 + i\hbar \varepsilon_{ijn} [L_i, r_j] = \{ L_i^2, r_n \} + i\hbar \varepsilon_{ijn} (-i\hbar \varepsilon_{ikj} r_k) \]

Für den hinteren Teil ergibt sich jedoch:

\[\varepsilon_{ijn} \varepsilon_{ikj} r_k = (\delta_{jk} \delta_{nj} - \delta_{jj} \delta_{nk}) r_k = r_n - r_n = 0 \]

und damit

\[2L_i r_n L_i = \{ L_i^2, r_n \} \]

13. Übung
Moderne Theoretische Physik II (Quantenmechanik II)
Institut für Theoretische Teilchenphysik
Prof. Dr. M. Steinhauser, Dr. L. Mihaila
WS 12/13 – Blatt 13
Abgabe: 01.02.2013
Besprechung: 05.02.2013

(*) Aufgabe 1 (5P): Lebensdauer für Dipolübergänge
Betrachten Sie ein Wasserstoffatom, wobei sich das Elektron in einem $2P$-Zustand mit $m = 0, +1$ oder -1 befindet. Mit Hilfe der zeitabhängigen Störungstheorie erster Ordnung (vgl. Vorlesung) erhält man für die Übergangsrate in den $1S$-Zustand

$$\Gamma_{2P \to 1S, \lambda} = \frac{\alpha}{2\pi c^2} \omega \left| \vec{d}_{2P, 1S} \cdot \vec{e}_\lambda \right|^2,$$

wobei λ Wellenzahl und Polarisation des Photons sind und sich ω aus der Energiedifferenz zwischen dem $2P$- und $1S$-Niveau ergibt.

(a) Summieren Sie über beiden Polarisationszustände und integrieren Sie über den Raumwinkel $d\Omega$ (des Vektors \vec{k}), um die Lebensdauer in Abhängigkeit vom Betrag des Dipolmatrixelements $|\vec{d}_{2P, 1S}|$ zu bekommen.

(b) Berechnen Sie das Dipolmatrixelement $\vec{d}_{2P, 1S}$. und drücken Sie die Lebensdauer τ durch α, m_e, c und \hbar aus.

(c) Werten Sie τ numerisch aus. Numerische Werte für die Konstanten finden Sie auf der Webseite pdg.lbl.gov/2012/reviews/contents_sports.html

Aufgabe 2: Auswahlregeln für Dipolübergänge eines harmonischen Oszillators
Betrachten Sie einen elektrisch geladenen harmonischen Oszillator. Leiten Sie die Auswahlregeln für elektrische Dipolübergänge her. Berechnen Sie die möglichen Frequenzen der emittierten bzw. absorbierten Strahlung.

Hinweis: Die Hermite-Polynome genügen folgender Rekursionsformel:

$$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x).$$

(*) Aufgabe 3 (5P): System von zwei identischen Teilchen
Betrachten Sie ein System von zwei identische Teilchen mit (i) Spin $1/2$ und (ii) Spin 1, die sich im Potential eines harmonischen Oszillator befinden. Vernachlässigen Sie dabei die Wechselwirkung zwischen den beiden Teilchen.

(a) Geben Sie die Symmetrieeigenschaften der Eigenvektoren der Operatoren \vec{S}^2 und \vec{S}_z an, wobei \vec{S} der Gesamtspinoperator ist.

Hinweis: Benutzen Sie dazu die Ergebnisse der Aufgabe 1 von Übungsblatt 3.

(b) Berechnen Sie die Energien und die Wellenfunktionen für den Grundzustand und den ersten angeregten Zustand. Geben Sie jeweils den Entartungsgrad an.

Aufgabe 4: System von N nicht-wechselwirkenden identischen Bosonen
Betrachten Sie ein System aus N nicht-wechselwirkenden identischen Bosonen, bei dem das i-te Niveau n_i-fach besetzt sei. Die Ein-Teilchen-Zustände seien gegeben durch $|\alpha, i_\alpha\rangle$, wobei α bzw. i_α den Teilchen- bzw. Niveauindex bezeichnen. Drücken Sie den Zustandsvektor dieses Systems unter Berücksichtigung des Symmetrisierungspostulats durch die Produktzustände $|1, i_1; 2, i_2; \ldots; N, i_N\rangle$ =
$|1, i_1 \rangle \otimes \cdots \otimes |N, i_N \rangle$ aus und leiten Sie die Normierungskonstante her.

45. Aufgabe: Lebensdauer für Dipolübergänge

(a) (Dies ist eine Art Zwischenrechnung der Vorlesung.) Wir kennen aus der Vorlesung die Übergangsrate

$$\Gamma_{2p \rightarrow 1s, \vec{k}, \lambda} = \frac{\alpha}{2\pi c^2} \omega^3 |\vec{d}_{2p,1s} \cdot \vec{\epsilon}_{\vec{k},\lambda}|^2$$

Die Wahrscheinlichkeit pro Zeit t dass ein Photon mit Polarisation λ in $d\Omega$ ausgesandt wird. Wir summieren dazu über alle Wellenvektoren $\vec{k} \in d\Omega$.

$$d\omega = \sum_{\vec{k} \in d\Omega} \Gamma_{2p \rightarrow 1s, \vec{k}, \lambda}$$

Die Ersetzung der Summe durch das Integral ist wieder gegeben durch. Da \vec{k} nur im Raumwinkel liegen darf wird die Summe dieser k zu einer Integration über den Raumwinkel.

$$\sum_{\vec{k} \in d\Omega} \rightarrow \int d\Omega$$

Verwende wie in der Vorlesung die Darstellung der $\vec{d}\vec{\epsilon}$ durch Kugelkoordinaten

$$\vec{d}_{2p,1s} \vec{\epsilon}_{\vec{k},1} = \sin \Theta \cos \phi |\vec{d}_{2p,1s}$$

$$\vec{d}_{2p,1s} \vec{\epsilon}_{\vec{k},2} = \sin \Theta \sin \phi |\vec{d}_{2p,1s}$$

Damit erhält man:

$$d\omega_{2p,1s} = \sum_{\lambda} d\omega_{\lambda} = \frac{\alpha}{2\pi c^2} \omega^3 |\vec{d}_{2p,1s}|^2 \sin^2 \Theta d\Omega$$

$$d\omega_{2p,1s} = \frac{\alpha}{2\pi c^2} \omega^3 |\vec{d}_{2p,1s}|^2 \int_{0}^{2\pi} d\phi \int_{-1}^{1} d\cos \Theta \left(1 - \cos^2 \Theta \right) = \frac{4\alpha}{3c^2} \omega^3 |\vec{d}_{2p,1s}|^2$$

Die Lebensdauer ist das Inverse:

$$\frac{1}{\tau} = d\omega_{2p,1s} = \frac{4\alpha}{3c^2} \omega^3 |\vec{d}_{2p,1s}|^2$$

(b) Siehe Ansatz aus der Vorlesung. Mit Verwendung der Kugelflächenfunktionen Y_{10}, Y_{11}
und \(Y_{1-1} \) erhalten wir:

\[
\mathbf{d}_\Omega = \int \, d\Omega Y_{00}^* Y_{1m}^* = \int \, d\Omega \frac{1}{\sqrt{4\pi}} \left(Y_{1m}^* \frac{1}{2} \sqrt{\frac{8\pi}{3}} (Y_{1-1} - Y_{11}) \right) = \frac{1}{\sqrt{6}} \left(i(\delta_{m,-1} + \delta_{m,1}) \right) \]

Da \(m \) immer nur einen der drei Werte \(m = -1, 0, 1 \) annehmen kann, sind nie alle \(\delta \)-Funktionen gleichzeitig eins. Genauer gesagt ist der Betrag des Vektors in allen Fällen \(\sqrt{2} \) (was man durch einfaches Einsetzen finden kann). Und man erhält damit

\[
|d_\Omega|^2 = \frac{1}{3}
\]

Für den Radialanteil gilt (wie auf dem ÜB 11 A 3 gezeigt):

\[
d_r = \int R_{21} r^3 R_{00} = \frac{1}{\sqrt{6}} \frac{256}{81} a_0
\]

Damit ist insgesamt:

\[
|d_{2p,1s}|^2 = \frac{11}{3} \left(\frac{256}{81} \right)^2 a_0^2
\]

Und als Ergebnis bekommt man damit

\[
d\omega_{2p,1s} = \frac{3 \alpha^2 mc^2}{8 \frac{\hbar}{x}}
\]

\[
\tau_{2p \rightarrow 1s} \approx 1.6 \text{ ns}
\]

46. Aufgabe: Auswahlregeln für Dipolübergänge eines harmonischen Oszillators

Die Eigenfunktionen des harmonischen Oszillators sind gegeben durch:

\[
d_{nm} = \langle n | x | m \rangle = \int dxc_n c_m H_n \left(\frac{x}{x_0} \right) x H_m \left(\frac{x}{x_0} \right) e^{-xr/x_0^2}
\]

Es gilt die folgende Beziehung:

\[
\int dx e^{-x^2} H_n(x) H_m(x) = \frac{\delta_{nm}}{c_n^2}
\]
Mit der Rekursionsformel vom Blatt erhält man:

\[d_{nm} = c_n c_m x_0 \int H_n(y) y H_m(y) e^{-y^2} dy = c_n c_m x_0 \int \left(\frac{1}{2} H_{m+1}(y) + m H_{m-1}(y) \right) H_n e^{-y^2} \]

und aufgrund der Orthogonalität der Hermite-Polynome:

\[d_{nm} = x_0 \frac{c_m}{c_n} \left(\frac{1}{2} \delta_{n,m+1} + m \delta_{n,m-1} \right) \]

Die Auswahlregel besagt, dass \(d_{nm} \) ungleich null ist. Dies ist äquivalent zu \(n = m \pm 1 \). Die Frequenz der emittierten / abgestrahlten Leistung muss genau der Energiedifferenz betragen. Die Differenz zweier Zustände mit \(\Delta n = \pm 1 \) ist bei einem harmonischen Oszillator gerade gegeben durch:

\[\Delta E = \hbar \omega_0 \]

wenn \(\omega_0 \) die Eigenfrequenz des Oszillators ist. Dann ist also

\[\omega_{\text{Photon}} = \omega_0 \]

47. Aufgabe: System von zwei identischen Teilchen

Wir benutzen in der Aufgabe ohne Beweis die in den vorherigen Arbeitsblättern erarbeiteten Ergebnisse für den Wechsel der beiden Koordinatensysteme (zwei einzelne Spins in Gesamtspin). Aufgeschrieben werden die Zustände immer in der Form

\[|s, m_s\rangle = \sum c_n |s_1, s_2, m_1, m_2\rangle \]

mit dem Gesamtspin \(s \), dem Eigenwert des Gesamtspins in \(z \)-Richtung \(m_s \) und den Anteilen der einzelnen Spins \(s_1, s_2 \) bzw. \(m_1 \) und \(m_2 \) in \(z \)-Richtung. Die \(c_n \) sind Koeffizienten abhängig von allen Parametern (die CGK), welche schon in vorherigen Aufgaben berechnet wurden.

(a) Wir betrachten die beiden Fälle getrennt:

Zwei Teilchen mit Spin \(s = 1/2 \). Es ergeben sich folgende Darstellungen der Ei-
Zweiteilchen mit Spin \(s = 1 \). Diesmal ergeben sich folgende Darstellungen der Eigenzustände von \(\vec{S}^2 \) und \(S_z \).

\[
|0, 0\rangle = \frac{1}{\sqrt{3}} (|1, 1, 1, 1\rangle + |1, 1, 1, -1\rangle - |1, 1, 0, 0\rangle)
\]

\[
|0, -2\rangle = |1, 1, -1, -1\rangle
\]

\[
|1, 0\rangle = \frac{1}{\sqrt{2}} (|1, 1, 1, 1\rangle - |1, 1, -1, -1\rangle)
\]

\[
|1, 1\rangle = \frac{1}{\sqrt{2}} (|1, 1, 1, 0\rangle - |1, 1, 0, 1\rangle)
\]

\[
|1, -1\rangle = \frac{1}{\sqrt{3}} (|1, 1, 1, 0\rangle - |1, 1, -1, -1\rangle)
\]

\[
|1, 2\rangle = \frac{1}{\sqrt{2}} (|1, 1, 0, 1\rangle + |1, 1, 1, 0\rangle)
\]

\[
|2, 0\rangle = \frac{1}{\sqrt{6}} (|1, 1, 1, 1\rangle + 2 |1, 1, 0, 0\rangle + |1, 1, 1, -1\rangle)
\]

\[
|2, 1\rangle = \frac{1}{\sqrt{2}} (|1, 1, 0, 1\rangle + |1, 1, 1, 0\rangle)
\]

\[
|2, 2\rangle = |1, 1, 1, 1\rangle
\]
Wieder betrachten wir was passiert, wenn wir m_1 und m_2 tauschen. Man erkennt recht schnell, dass sich nur bei den Zuständen mit $s = 1$ das Vorzeichen ändert. Sie sind also antisymmetrisch. Alle anderen (mit $s = 0$ oder $s = 2$) sind symmetrische Zustände.

\[
\chi_{s=1}(s_1, s_2) = -\chi_{s=1}(s_2, s_1)
\]

\[
\chi_{s=0 \text{ oder } s=2}(s_1, s_2) = \chi_{s=0 \text{ oder } s=2}(s_2, s_1)
\]

(b) Sehen wir vom Spin ab, so handelt es sich bei den beiden Teilchen um zwei Teilchen, welche sich jeweils in einem (unabhängigen) harmonischen Oszillator befinden. Jedes Teilchen lässt sich also durch die Angabe des Besetzungszahloperators N beschreiben. Das gesamte System lässt sich also beschreiben durch Kets der Form $|n_1, n_2, s, m_s⟩$ wobei n_1 bzw. n_2 die Besetzungszahlen der beiden Teilchen sind und s und m_s die beiden oben eingeführten Quantenzahlen für den Gesamtspin. Der Hamiltonoperator des Systems ergibt sich als

\[
H = \hbar \omega (N_1 + N_2 + 1)
\]

mit den Besetzungszahloperatoren N_1 und N_2 für die beiden Teilchen.

Der Grundzustand des harmonischen Oszillators ist ein Zustand, in dem beide Teilchen im Grundzustand sind. Also $|n_1 = 0, n_2 = 0⟩$. Dieser Zustand ist offensichtlich symmetrisch unter Vertauschung der beiden Teilchen. Die nächst höhere Energie wird erreicht, wenn eines der beiden Teilchen sich in einem Zustand mit $n = 1$ befindet, das andere in $n = 0$. Es ergeben sich also die beiden Möglichkeiten

\[
|n_1 = 1, n_2 = 0⟩ \quad |n_1 = 0, n_2 = 1⟩
\]

Aufgrund des Symmetrisierungspostulates können aber nur die Linearkombinationen auftreten. Dabei ist

\[
|S⟩ := \frac{1}{\sqrt{2}} (|n_1 = 1, n_2 = 0⟩ + |n_1 = 0, n_2 = 1⟩)
\]

symmetrisch, während

\[
|A⟩ := \frac{1}{\sqrt{2}} (|n_1 = 1, n_2 = 0⟩ − |n_1 = 0, n_2 = 1⟩)
\]

132
antisymmetrisch ist. Die Energien sind jeweils

\[H |A\rangle = 2\hbar \omega |A\rangle \quad H |S\rangle = 2\hbar \omega |S\rangle \]

Alle Spin-Zustände haben die selbe Energie, da \(H \) unabhängig vom Spin ist. Wir betrachten wieder beide Fälle getrennt.

Zwei Teilchen mit Spin \(s = 1/2 \). Da es sich bei diesen Teilchen um Fermionen handelt, muss jeder Zustand antisymmetrisch sein. Da der Grundzustand des harmonischen Oszillators \(|n_1 = 0, n_2 = 0\rangle\) symmetrisch ist, muss der Spin-Zustand antisymmetrisch sein. Die einzige Möglichkeit für den Grundzustand (siehe oben) ist also der Zustand

\[|0_F\rangle = |n_1 = 0, n_2 = 0, s = 0, m_s = 0\rangle \]

Die Energie dieses Zustandes ist

\[E_{0_F} = \hbar \omega \]

Da es nur einen möglichen Zustand gibt, ist diese Energie nicht entartet. Beim ersten angeregten Zustand ergeben sich jetzt mehrere Möglichkeiten. Entweder die Bahnfunktion ist symmetrisch \(|S\rangle\) und damit muss die Spinfunktion antisymmetrisch sein \(|0, 0\rangle\) oder umgekehrt: antisymmetrische Bahn \(|A\rangle\) und symmetrische Spinfunktion \(|1, -1\rangle, |1, 0\rangle\) oder \(|1, 1\rangle\). Die vier Möglichkeiten sind also

\[|A\rangle \otimes |1, 1\rangle, |A\rangle \otimes |1, 0\rangle, |A\rangle \otimes |1, -1\rangle, |S\rangle \otimes |0, 0\rangle \]

oder beliebige normierte Linearkombinationen davon. Für die Energie gilt in allen Fällen

\[E_{1_F} = 2\hbar \omega \]

Diese ist also 4-fach entartet.

Zwei Teilchen mit Spin \(s = 1 \). Diese sind Bosonen. Die Gesamtwellenfunktion muss also symmetrisch sein. Zum symmetrischen Grundzustand des harmonischen Oszillators muss also auch eine symmetrische Spinfunktion gehören. Es ergeben sich also die Möglichkeiten

\[|n_1 = 0, n_2 = 0\rangle \otimes \{|0, 0\rangle, |2, -2\rangle, |2, -1\rangle, |2, 0\rangle, |2, 1\rangle, |2, 2\rangle\} \]
oder beliebige Linearkombinationen davon. Wieder ist die Energie
\[E_{0B} = \frac{\hbar \omega}{2} \]
aber diesmal ist sie 6-fach entartet. Für den ersten angeregten Zustand ergeben sich die Möglichkeiten
\[|A\rangle \otimes \{|1, -1\}, |1, 0\}, |1, 1\} \]
oder
\[|S\rangle \otimes \{|0, 0\}, |2, -2\}, |2, -1\}, |2, 0\}, |2, 1\}, |2, 2\} \]
da zu einer symmetrischen Bahnfunktion eine symmetrische Spinfunktion gehört und das selbe auch für antisymmetrische Funktionen. In allen Fällen ist die Energie
\[E_{1B} = \frac{3}{2} \hbar \omega \]
Sie ist 9-fach entartet.

Lösung aus Tutorium: Weniger Text mehr Formel als bei Nils, kann man vielleicht weglassen

Spin-1/2, Fermion

\[\psi_F(\vec{r}_1, s_1, \vec{r}_1, s_1) = -\psi_F(\vec{r}_2, s_2, \vec{r}_1, s_1) \]
\[\psi_F = \begin{cases}
\psi_s(\vec{r}_1, \vec{r}_2) \chi_a(s_1, s_2) \\
\psi_a(\vec{r}_1, \vec{r}_2) \chi_s(s_1, s_2)
\end{cases} \]
Mit
\[\psi_s = \frac{1}{\sqrt{2}} \left(\phi_{n1}(\vec{r}_1) \phi_{n2}(\vec{r}_2) + \phi_{n1}(\vec{r}_2) \phi_{n2}(\vec{r}_1) \right) \]
\[\psi_a = \frac{1}{\sqrt{2}} \left(\phi_{n1}(\vec{r}_1) \phi_{n2}(\vec{r}_2) - \phi_{n1}(\vec{r}_2) \phi_{n2}(\vec{r}_1) \right) \]
Die Spinzustände sind durch den Singlet (\(\chi_a\)) und die Tripletzustände (\(\chi_s\)) gegeben. Für den Grundzustand (\(n_1 = n_2\)) bekommt man:
\[\psi_F^{(0)} = N \phi_0(\vec{r}_1) \phi_0(\vec{r}_2) \chi_{\text{Singlet}}(s_1, s_2) \]
Dieser ist nicht entartet und wir erhalten die Energie

\[E^{(0)} = \epsilon_0 + \epsilon_0 = \hbar \omega \]

Da

\[\epsilon = \hbar \omega \left(n + \frac{1}{2} \right) \]

Für den ersten angeregten Zustand erhält man

\[\psi_s = \frac{1}{\sqrt{2}} (\phi_0(\vec{r}_1)\phi_0(\vec{r}_2) + \phi_1(\vec{r}_2)\phi_0(\vec{r}_1)) \]

\[\psi_a = \frac{1}{\sqrt{2}} (\phi_0(\vec{r}_1)\phi_1(\vec{r}_2) - \phi_1(\vec{r}_2)\phi_0(\vec{r}_1)) \]

Es liegt eine 4-fache Entartung vor.

\[E^{(1)} = \epsilon_0 + \epsilon_1 = 2\hbar \omega \]

Bosonen

\[\psi_B(\vec{r}_1, s_1, \vec{r}_1, s_1) = \psi_B(\vec{r}_2, s_2, \vec{r}_1, s_1) \]

\[\psi_B = \begin{cases}
\psi_s \chi_s \\
\psi_a \chi_a
\end{cases} \]

Mit \(\psi_s, \psi_a \) wie zuvor

\[\chi_s = \begin{cases}
\chi_{s=2} \\
\chi_{s=0}
\end{cases} \quad \chi_a = \chi_{s=1} \]

Grundzustand:

\[E^{(0)} = \hbar \omega \]

\[\psi_B^{(0)} = N\phi_0(\vec{r}_1)\phi_0(\vec{r}_2)\chi_s \]

Der Grundzustand ist 6-fach entartet (5 von \(s = 2 \) und 1 von \(s = 0 \))

Erster angeregter Zustand:

\[E^{(1)} = 2\hbar \omega \]

\[\psi_B^{(1)} = \alpha \psi_s \chi_s + \beta \psi_a \chi_a \]

Dieser Zustand ist 9-fach entartet.
48. Aufgabe: System von N nicht-wechselwirkenden identischen Bosonen

Wir betrachten ein System von N nicht-wechselwirkenden identischen Bosonen. Die Produktzustände sind gegeben durch:

\[\psi_B = C \sum_{\text{Permutationen}} |1, E_0\rangle \otimes |2, E_0\rangle \otimes \cdots \otimes |n_0, E_0\rangle \otimes \cdots \otimes |N, E_k\rangle \]

Wobei \(E_k \) das höchste besetzte Energieniveau ist. Die Anzahl der möglichen Permutationen sind gerade \(N! \). Wir fordern, dass die folgende Normierung gilt:

\[|\psi_B|^2 = 1 \]

Die Plätze im Null-Niveau sind identisch. Daraus ergibt sich der Korrekturfaktor

\[C = \sqrt{\frac{n_1!n_2! \cdots n_k!}{N!}} \]

1 Übungsklausur

1.1 Klausur A
Übungsklausur zur Vorlesung
Moderne Theoretische Physik II (Quantenmechanik II)
Institut für Theoretische Teilchenphysik

Prof. Dr. M. Steinhauser, Dr. L. Mihaila 18.12.2012
Bearbeitungsdauer: 90 Minuten

Name: ___________________________ Gruppe: ___________________________
Matrikelnummer: _______________________

Schreiben Sie bitte auf jedes Blatt Ihren Namen und Ihre Matrikelnummer.

Aufgabe: 1 2 3 4 5

Hilfsmittel: Ein eigenhändig beschriebenes DIN A4 Blatt.

Aufgabe 1 (8 Punkte)
a) Ein Wasserstoffatom im Grundzustand befindet sich in einem elektrischen Feld \(\vec{E} = E \vec{e}_z \). Geben Sie den Hamilton-Operator, der den Einfluß des elektrischen Feldes beschreibt, an. Berechnen Sie im Rahmen der Störungstheorie erster Ordnung die Energiekorrekturen.

Hinweise:
(i) Die Wellenfunktion des Wasserstoffatoms im Grundzustand lautet \(\Psi_{100}(\vec{r}) = R_{10}(r)Y_{00}(\theta, \phi) \) mit \(R_{10}(r) = 2a^{-3/2}e^{-r/a} \) und \(Y_{00}(\theta, \phi) = \frac{1}{\sqrt{4\pi}} \), wobei \(a \) den Bohrschen Radius bezeichnet.

(b) Gegeben seien die Vierervektoren \(a^\mu = (a_0, \vec{a})^T \), \(b^\mu = (b_0, \vec{b})^T \), \(c^\mu = (c_0, \vec{c})^T \). Welche der folgenden Ausdrücke sind invariant unter räumlichen Drehungen: (i) \(\vec{a} \cdot \vec{b} \), (ii) \(a_0 b_0 \)? Begründen Sie Ihre Antwort.

c) Berechnen Sie \(\gamma^\mu \not{\not{a}} \gamma_\mu \), wobei \(a \) und \(b \) Vierervektoren sind.

d) Berechnen Sie den Kommutator \([\gamma^\mu, \sigma^{\nu\rho}]\) mit \(\sigma^{\nu\rho} = \frac{i}{2} [\gamma^\nu, \gamma^\rho] \).

Aufgabe 2 (4 Punkte)

Gegeben seien drei nicht identische Teilchen mit Spin 1/2. Was sind die möglichen Werte für den Gesamtspin \(J \) des Systems? Wieviele Zustände kommen jeweils vor?
Aufgabe 3 (10 Punkte)
Ein System bestehe aus zwei verschiedenen Teilchen mit jeweils Spin 1/2. Sei \(\vec{r}(r, \theta, \phi) = \vec{r}_1 - \vec{r}_2 \), wobei \(\vec{r}_1 \) und \(\vec{r}_2 \) die Ortsvektoren der Teilchen sind.

(a) Zeigen Sie, dass der Operator \(S_{12} = 2 \left(\frac{1}{\vec{r}} \cdot (\vec{S} \cdot \vec{r}) - \vec{S}^2 \right) \), wobei \(\vec{S} \) der Gesamtspin ist, nur von den Polar- und Azimutwinkeln \(\theta \) und \(\phi \) und den Spinquantenzahlen abhängt. Zeigen Sie, dass die Abhängigkeit von \(\theta \) und \(\phi \) durch Kugelflächenfunktionen mit \(l = 2 \) ausgedrückt werden kann.

(b) Zeigen Sie, dass der Operator \(S_{12} \) in folgende Form übergeführt werden kann
\[
S_{12} = \sqrt{\frac{24\pi}{5}} T^{(2)} \cdot S^{(2)},
\]
wobei \(T^{(2)} \) und \(S^{(2)} \) irreduzible Tensoroperatoren zweiter Stufe sind, die Funktionen der Bahn- bzw. Spinvariablen sind. Dabei ist das Skalarprodukt folgendermaßen definiert
\[
T^{(2)} \cdot S^{(2)} = \sum_{q=-2}^{2} (-1)^q T_q^{(2)} S_{-q}^{(2)}.
\]
Geben Sie explizite Ausdrücke für \(T_q^{(2)} \) und \(S_{-q}^{(2)} \) an und zeigen Sie/begründen Sie, dass \(T^{(2)} \) und \(S^{(2)} \) irreduzible Tensoroperatoren zweiter Stufe sind.

Hinweise: (i) Es ist günstig, die Operatoren \(S_{\pm} = S_x \pm i S_y \) einzuführen.

(ii) \[
[S_z, S_{\pm}] = \pm \hbar S_{\pm}, \quad [S_+, S_-] = 2\hbar S_z, \quad S_+ S_- = S^2_z + S^2_y + \hbar S_z ;
\]
\[
Y_{20}(\theta, \phi) = \sqrt{\frac{5}{16\pi}} (3 \cos^2 \theta - 1), \quad Y_{2\pm 1}(\theta, \phi) = \mp \sqrt{\frac{15}{8\pi}} \sin \theta \cos \theta e^{\pm i\phi} , \quad Y_{2\pm 2}(\theta, \phi) = \sqrt{\frac{15}{32\pi}} \sin^2 \theta e^{\pm 2i\phi}.
\]

Aufgabe 4 (8 Punkte)
Ein System aus zwei Nukleonen (ein Proton und ein Neutron) mit Spin 1/2 wird durch folgenden Hamilton-Operator
\[
H = \frac{\vec{p}^2}{2m} + V(r) + \xi(r) \vec{L} \cdot \vec{S} + \eta(r) \vec{S}_1 \cdot \vec{S}_2
\]
beschrieben, wobei \(\vec{L} \) und \(\vec{S} = \vec{S}_1 + \vec{S}_2 \) den Gesamtbahndrehimpuls bzw. Gesamtspin bezeichnet. \(r \) ist der Abstand der beiden Nukleonen.

(a) Zeigen Sie, dass \([H, \vec{J}] = 0 \), wobei \(\vec{J} = \vec{L} + \vec{S} \).

(b) Durch welche Quantenzahlen wird das System beschrieben?

(c) In wieviele Niveaus spalten die Zustände zu \(l = 0 \) und \(l = 1 \) auf?

(d) Berechnen Sie die relative Aufspaltung innerhalb des Multipletts zu \(l = 1 \) und \(s = 1 \) und skizzieren die Energieniveaus.
1.2 Klausur B
Übungsklausur zur Vorlesung
Moderne Theoretische Physik II (Quantenmechanik II)
Institut für Theoretische Teilchenphysik

Prof. Dr. M. Steinhauser, Dr. L. Mihaila 18.12.2012
Bearbeitungsdauer: 90 Minuten

Name: ____________________________ Gruppe: ____________________________

Matrikelnummer: ____________________________

Schreiben Sie bitte auf jedes Blatt Ihren Namen und Ihre Matrikelnummer.

Aufgabe: 1 2 3 4

∑

Hilfsmittel: Ein eigenhändig beschriebenes DIN A4 Blatt.

Aufgabe 1 (8 Punkte)

a) Ein Wasserstoffatom im Grundzustand befindet sich in einem elektrischen Feld $\vec{E} = E\vec{e}_z$. Geben Sie den Hamilton-Operator, der den Einfluß des elektrischen Feldes beschreibt, an. Berechnen Sie im Rahmen der Störungstheorie erster Ordnung die Energiekorrekturen.

Hinweise:

(i) Die Wellenfunktion des Wasserstoffatoms im Grundzustand lautet $\Psi_{100}(\vec{r}) = R_{10}(r)Y_{00}(\theta, \phi)$ mit $R_{10}(r) = 2a^{-3/2}e^{-r/a}$ und $Y_{00}(\theta, \phi) = \frac{1}{\sqrt{4\pi}}$, wobei a den Bohrschen Radius bezeichnet.

(b) Gegeben seien die Vierervektoren $a^\mu = (a_0, \vec{a})^T$, $b^\mu = (b_0, \vec{b})^T$, $c^\mu = (c_0, \vec{c})^T$. Welche der folgenden Ausdrücke sind invariant unter räumlichen Drehungen: (i) $a_0\vec{b}$, (ii) $a_\mu b_\nu c_\rho \varepsilon^{\mu\nu\rho\delta}$? Begründen Sie Ihre Antwort.

(c) Berechnen Sie $\gamma^\mu \gamma^\nu \gamma^\rho \gamma_{\mu}$.

(d) Berechnen Sie den Kommutator $[\gamma^\mu, \sigma^{\nu\rho}]$ mit $\sigma^{\nu\rho} = \frac{i}{2}[\gamma^\nu, \gamma^\rho]$.

Aufgabe 2 (6 Punkte)

Gegeben seien drei nicht identische Teilchen mit Spin 1/2, 1/2 und 1. Was sind die möglichen Werte für den Gesamtspin J des Systems? Wieviele Zustände kommen jeweils vor?
Aufgabe 3 (10 Punkte)
Ein System bestehe aus zwei verschiedenen Teilchen mit jeweils Spin $\frac{1}{2}$. Sei $\vec{r}(r, \theta, \phi) = \vec{r}_1 - \vec{r}_2$, wobei \vec{r}_1 und \vec{r}_2 die Ortsvektoren der Teilchen sind.

(a) Zeigen Sie, dass der Operator $S_{12} = 2 \left(\frac{3}{r^2} \right) \left(\vec{S} \cdot \vec{r} \right)^2 - \vec{S}^2$, wobei \vec{S} der Gesamtspin ist, nur von den Polar- und Azimutwinkeln θ und ϕ und den Spinquantenzahlen abhängt. Zeigen Sie, dass die Abhängigkeit von θ und ϕ durch Kugelflächenfunktionen mit $l = 2$ ausgedrückt werden kann.

(b) Zeigen Sie, dass der Operator S_{12} in folgende Form übergeführt werden kann

$$S_{12} = \sqrt{\frac{24\pi}{5}} T^{(2)} \cdot S^{(2)}$$

wobei $T^{(2)}$ und $S^{(2)}$ irreduzible Tensoroperatoren zweiter Stufe sind, die Funktionen der Bahn- bzw. Spinvariablen sind. Dabei ist das Skalarprodukt folgendermaßen definiert

$$T^{(2)} \cdot S^{(2)} = \sum_{q=-2}^{2} (-1)^q T_q^{(2)} S_{-q}^{(2)}.$$

Geben Sie explizite Ausdrücke für $T_q^{(2)}$ und $S_{-q}^{(2)}$ an und zeigen Sie/begründen Sie, dass $T^{(2)}$ und $S^{(2)}$ irreduzible Tensoroperatoren zweiter Stufe sind.

Hinweise: (i) Es ist günstig, die Operatoren $S_{\pm} = S_x \pm i S_y$ einzuführen.

(ii) $[S_z, S_{\pm}] = \pm \hbar S_{\pm}$, $[S_+, S_-] = 2 \hbar S_z$, $S_+ S_- = S_z^2 + S_y^2 + \hbar S_z$;

$$Y_{20}(\theta, \phi) = \sqrt{\frac{5}{16\pi}} (3 \cos^2 \theta - 1), \quad Y_{2\pm 1}(\theta, \phi) = \frac{15}{8\pi} \sin \theta \cos \theta e^{\pm i \phi}, \quad Y_{2\pm 2}(\theta, \phi) = \sqrt{\frac{15}{32\pi}} \sin^2 \theta e^{\pm 2i \phi}.$$

Aufgabe 4 (6 Punkte)
Betrachten Sie den Hamilton-Operator eines relativistischen geladenen Teilchens im elektromagnetischen Feld. Zeigen Sie, dass die Klein-Gordon-Gleichung invariant ist, falls folgende Transformationen gleichzeitig durchgeführt werden

$$\vec{A} \to \vec{A}' = \vec{A} + \vec{\nabla} \Lambda,$$

$$\Phi \to \Phi' = \Phi - \frac{\partial}{\partial t} \Lambda,$$

$$\Psi \to \Psi' = e^{i q \Lambda},$$

wobei \vec{A} das Vektorpotential und Φ das skalare Potential ist. \vec{A}, Φ und Λ sind Funktionen vom Orts-Vierervector x^μ. q bezeichnet die elektrische Ladung des Teilchens.
Dieses Skript wurde heruntergeladen von ugroup.hostzi.com

Alle Rechte verbleiben beim lesenden Dozenten.
Keine Garantie auf Richtigkeit oder Vollständigkeit.