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1. Kurzfragen (5 + 10 + 10 + 10 + 5 + 10 = 50 Punkte)

(a) Second law of thermodynamics. Not all heat can be converted into work, i.e. there
is no heat engine that can convert all the heat into work.

(b) Fermi and Bose distribution functions. The Fermi distribution function is given by

nF =
1

1 + eβ(εk−µ)
(1)

and the Bose function by

nB =
1

1− eβ(εk−µ)
, (2)

here εk is the energy dispesrion, β = 1/(kT ) and µ = µ(T ) is the chemical potential.

In the limit T → ∞, both nB and nF reduce to Maxwell-Boltzmann distribution
nMB = eβ(εk−µ).

The temperature variation of the chemical potential can be seen in the figure below.
For bosons: the chemical potential is equal to zero for T < Tc, where Tc is the
temperature of Bose-Einstein condensation, for T > Tc chemical potential becomes
negative. For fermions, at zero temperature the chemical potential is equal to the
Fermi energy, and then it drops down as the temperature is increased. Eventually,
for high temperatures it becomes negative (as Fermi and Bose statistics both reduce
to the Maxwell-Boltzmann).

(c) Free energy of a classical ideal gas. We start from the partition function

Z = ΠN
i=1

∫
d3pi d

3xi
h3

e−β
p2i
2m

= ΠN
i=1

∫
d3pi
h3

e−β
p2i
2m

=

(
V

λ3

)N
(3)

where λ =
√

βh2

2πm is the deBroglie wavelength at temperature T . We have used that∫
dxe−αx

2
=
√

π
α .

F = −kT lnZ = −NkT ln
V

λ3
(4)

Quantum effects become important when the inter-particle distance becomes smal-
ler than the thermal de Broglie wavelength. The inter-particle distance a is given

by a = (N/V )−3 = n−3. For n−3 <
√

βh2

2πm quantum statistics should be used.
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Abbildung 1: Chemical potential as a function of temperature for bosons (above) and
fermions (below)

(d) Grand-canonical function for fermions. This is given by

ΩF = −kT
∑
p

ln
(

1 + e−β(εp−µ)
)

(5)

For T → 0, β →∞, and at T = 0, µ = EF . Therefore for εp such that εp < EF , we
have that ln

(
1 + e−β(εp−µ)

)
≈ β(εp − EF ), while the states with εp > EF will give

zero contribution. Then ωF =
∑

p<pF
(εp − EF ), i.e is related to the total energy

of the system which can also be rewritten in terms of an integral over density of
states.

(e) Equipartition theorem: Every quadratic degree of freedom in the Hamiltonian con-
tributes kT/2 to the internal energy. For a molecule of two atoms in d = 3, there is
a vibrational mode that contributes 2kT2 to the internal energy and 3kT2 from the

translation. Rotational degrees of freedom contribute 2kT2 to the internal energy .

Therefore U = 7
2NkT , and hence c = dU

dT = 7
2Nk.

(f) Bose Einstein condensation and critical temperature in d = 3. Bose Einstein con-
densation: for temperatures below some critical temperature Tc, there is a macros-
copic occupation of the lowest energy state in the spectrum (p = 0, for quadratic

dispersion εp = p2

2m). At T = 0 all bosons condensed into the ground state.

Critical temperature. For this purpose we can set µ ≈ 0. The number of bosons in
the excited k 6= 0 states is

Ne =
V

(2π)3

∫
d3k

1

exp
(
β ~2k2

2m

)
− 1

=
V

(2π)3

(
2mkT

~2

)3/2

2π

∫ ∞
0

dx

√
x

ex − 1︸ ︷︷ ︸
√
π
2
ζ(3/2)

= ζ(3/2)
V

λ3
(6)

where



λ =

√
βh2

2πm
(7)

and we have used the substitution x = β ~2k2
2m . When Ne = N , we get the critical

temperature Tc. This leads to

Tc =
~2

2mkπ

(
(2π)3N

V ζ(3/2)

)2/3

. (8)

2. Elektronen in Kohlenstoffnanoröhrchen (5 + 5 + 5 + 10 = 25 Punkte)

(a) Fermi energy. The number of particles is given by

N = gs

∫
g(k)dk = 2

∫ kF

0

2dk
2π
L

=
2

π
kFL (9)

where gs = 2 is the spin degeneracy, and g(k) is the density of states in the mo-
mentum space. From this it follows that

kF =
N

L

π

2

εF = vkF = v
N

L

π

2
(10)

(b) The internal energy at T = 0. This is given by

ET=0 = 2

∫
g(k)vkdk =

L

π
vk2

F =
N2πv

4L
(11)

(c) Grand-canonical potential, its relation with energy E, and the pressure p. We start
from

Ω = −kTgs
∫
g(k)dk ln (1 + exp (−β(εk − µ)))

= −2kT
L

π

∫ ∞
0

dk ln (1 + exp (−β(vk − µ))) (12)

After integrating by parts, we get that

Ω = −kTgs
∫
g(k)dk ln (1 + exp (−β(εk − µ)))

= −2kT
L

π

{
[k ln (1 + exp (−β(εk − µ)))]∞0 + βv

∫
dk k

1

1 + eβ(vk−µ)

}
= −Lv

π

∫
dk k

1

1 + eβ(vk−µ)
(13)

The internal energy ET of a gas of fermions at temperature T is given by



ET = gs

∫
dk g(k)εknF (εk, T )

= 2
L

π

∫
dk vk

1

1 + eβ(vk−µ)

= −Ω (14)

where we have compared this with (13) to obtain the equality in the last line.

(d) Adiabatic process.

We can start from the Gibbs - Dunhem relation, according to which Ω = −pL. In
the previous part of the question, we have proved that in d = 1, Ω = −E. Then it
follows that E = pL. Differentiating this expression we get that

δE = pδL+ Lδp (15)

For the adiabatic process, it holds that δE = δQ − pδL = −pδL, since there is no
heat exchanged with the environment. Using this in conjuction with (15) we get
that

− pδL = pδL+ Lδp (16)

From this it follows that pL2 = const. From (13) we see that we can rewrite the
grand-canonical putential in the form of

Ω = T 2Lf(µ/T ) (17)

The entropy per unit length is given by

S/L = −1/L

(
∂Ω

∂T

)
L,µ

= 2Tf(µ/T )− µf ′(µ/T ) (18)

From above we conclude that S
L(αµ, αT ) = αSL(µ, T ), i.e. S

L is a homogeneous
function of µ, T of degree 1. Similarly we get that

N/L = −1/L

(
∂Ω

∂µ

)
T,µ

= −Tf ′(µ/T ) (19)

From above we conclude that N
L (αµ, αT ) = αNL (µ, T ), i.e. N

L is a homogeneous
function of µ, T of degree 1.

Therefore, it follows that S(µ,T )
N(µ,T ) = S(αµ,αT )

N(αµ,αT ) is homogeneous function of degree 0.

Since in adiabatic process S is constant, and N is constant, it must follow that µ
T

is constant in adiabatic process. From (19), it the follows that TL = const. To find
the pT−δ = const exponent, we use that pL2 = const and T 2L2 = const. Dividing
these leads to pT−2 = cosnt. Hence δ = 2.

3. Brownsche Bewegung (5 + 5 + 5 + 5 + 5 = 25 Punkte)
The Langevin equation is given by

mẍ(t) +mγẋ(t) +mω2
0x(t) = ξ(t) .



(a) We only need to solve the homogeneous equation (since we are given the Green’s
function)

mẍ(t) +mγẋ(t) +mω2
0x(t) = 0

This is a standard damped harmonic oscillator equation with the solution of the
form xh(t) ' eiωt. After substituting this in the Langevin equation, we obtain the
equation for ω:

−ω2 + iωγ + ω2
0 = 0 (20)

which leads to the solutions of the form

ω =
iγ

2
±
√
ω2

0 −
γ2

4︸ ︷︷ ︸
Ω

(21)

and

xh(t) = e−
γ
2
t (A cos (Ωt) +B sin (Ωt)) (22)

the constant A and B can be determined from the initial conditions. From x(0) = x0

we get A = x0 and similarly from ẋ(0) = v0 if follows that B =
v0+ γ

2
x0

Ω . The final
solution is then given by

x(t) = e−
γ
2
t

(
x0 cos (Ωt) +

v0 + γ
2x0

Ω
sin (Ωt)

)
+

∫ t

0
dt′e−γ

t−t′
2 sin (Ω(t− t′))/Ω(23)

(b) Bearing in mind that 〈ξ(t)〉ξ = 0, and using the result of part a) for x(t), we have
that

〈x(t)〉ξ = e−
γ
2
t

(
x0 cos (Ωt) +

v0 + γ
2x0

Ω
sin (Ωt)

)
, (24)

this is damped harmonic motion as expected, and in the limit of large t, 〈x(t)〉ξ → 0.

(c) Calculating 〈x(t)x(t′)〉ξ for t > t′. We substitute x(t), as given by (23). In calculating
〈x(t)x(t′)〉ξ, only the cross terms that contain no ξ terms, or two ξ terms will survive
after taking the averages (since 〈ξ(t)〉ξ = 0). Therefore, we have that

〈x(t)x(t′)〉ξ = e−
γ
2

(t+t′)

(
x0 cos (Ωt) +

v0 + γ
2x0

Ω
sin (Ωt)

)(
x0 cos (Ωt′) +

v0 + γ
2x0

Ω
sin (Ωt′)

)
+

1

(mΩ)2
e−

γ
2

(t+t′)

∫ t

0
dt1 sin (Ω(t− t1))

∫ t′

0
ds sin (Ω(t′ − s)) 〈ξ(t1)ξ(s)〉ξ︸ ︷︷ ︸

2mγkTδ(t1−s)

= e−
γ
2

(t+t′)

(
x0 cos (Ωt) +

v0 + γ
2x0

Ω
sin (Ωt)

)(
x0 cos (Ωt′) +

v0 + γ
2x0

Ω
sin (Ωt′)

)
+ e−

γ
2

(t+t′) 2γkBT

mΩ2

∫ t′

0
dseγs sin

[
Ω(t− s)

]
sin
[
Ω(t′ − s)

]
(25)



We use that (given in the question)

2γkBT

mΩ2

∫ t′

0
dseγs sin

[
Ω(t− s)

]
sin
[
Ω(t′ − s)

]
= −kBT

mω2
0

cos(Ωt) cos(Ωt′)− γkBT

2mω2
0Ω

sin[Ω(t+ t′)]− kBT (4ω2
0 + γ2)

4mω2
0Ω2

sin(Ωt) sin(Ωt′)

+
kBT

mω2
0

eγt
′
(

cos[Ω(t− t′)] +
γ

2Ω
sin[Ω(t− t′)]

)
Then:

〈x(t)x(t′)〉ξ = e−
γ
2

(t+t′)〈
(
x0 cos (Ωt) +

v0 + γ
2x0

Ω
sin (Ωt)

)(
x0 cos (Ωt′) +

v0 + γ
2x0

Ω
sin (Ωt′)

)
〉

− e−
γ
2

(t+t′) kBT

mω2
0

cos(Ωt) cos(Ωt′)− e−
γ
2

(t+t′) γkBT

2mω2
0Ω

sin[Ω(t+ t′)]

− e−
γ
2

(t+t′)kBT (4ω2
0 + γ2)

4mω2
0Ω2

sin(Ωt) sin(Ωt′)

+
kBT

mω2
0

e−
γ
2

(t+t′)eγt
′
(

cos[Ω(t− t′)] +
γ

2Ω
sin[Ω(t− t′)]

)
(26)

(d) 〈x(t)x(t′)〉ξ in the regime t � γ−1 and t′ � γ−1. In this limit e−
γ
2

(t+t′) → 0, and
the only term that doesn’t dissapear in (26) is given by

〈x(t)x(t′)〉ξ =
kT

mω2
0

e−
γ
2

(t−t′)
(

cos[Ω(t− t′)] +
γ

2Ω
sin[Ω(t− t′)]

)
(27)

Then 〈x(t)x(t′)〉|t−t′|→0 = kT
mω2

0
, i.e. 〈x2(t)〉 = kT

mω2
0

(equipartition theorem). Simi-

larly, in the other limit 〈x(t)x(t′)〉|t−t′|→∞ = 0, i.e. after long time equilibrium is
reached.

(e) In thermal equilibrium we have that mω〈x2
0〉ξ/2 = kT/2 and m〈v2

0〉ξ/2 = kT/2, as
well as 〈x0v0〉ξ = 0. If we substitute this in correlator (26), it is easy to show that

all terms that come with a prefactor e−
γ
2

(t+t′) add up to zero. Then

〈x(t)x(t′)〉ξ =
kT

mω2
0

e−
γ
2

(t−t′)
(

cos[Ω(t− t′)] +
γ

2Ω
sin[Ω(t− t′)]

)
(28)


